コード例 #1
0
    def __init__(self, cfg, input_shape: ShapeSpec):
        """
        The following attributes are parsed from config:
            num_conv: the number of conv layers
            conv_dim: the dimension of the conv layers
            norm: normalization for the conv layers
        """
        super(MaskRCNNConvUpsampleHead, self).__init__()

        # fmt: off
        num_classes = cfg.MODEL.ROI_HEADS.NUM_CLASSES
        conv_dims = cfg.MODEL.ROI_MASK_HEAD.CONV_DIM
        self.norm = cfg.MODEL.ROI_MASK_HEAD.NORM
        num_conv = cfg.MODEL.ROI_MASK_HEAD.NUM_CONV
        input_channels = input_shape.channels
        cls_agnostic_mask = cfg.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK
        # fmt: on

        self.conv_norm_relus = []

        for k in range(num_conv):
            conv = Conv2d(
                input_channels if k == 0 else conv_dims,
                conv_dims,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=not self.norm,
                norm=get_norm(self.norm, conv_dims),
                activation=F.relu,
            )
            self.add_module("mask_fcn{}".format(k + 1), conv)
            self.conv_norm_relus.append(conv)

        self.deconv = ConvTranspose2d(
            conv_dims if num_conv > 0 else input_channels,
            conv_dims,
            kernel_size=2,
            stride=2,
            padding=0,
        )

        num_mask_classes = 1 if cls_agnostic_mask else num_classes
        self.predictor = Conv2d(conv_dims,
                                num_mask_classes,
                                kernel_size=1,
                                stride=1,
                                padding=0)

        for layer in self.conv_norm_relus + [self.deconv]:
            weight_init.c2_msra_fill(layer)
        # use normal distribution initialization for mask prediction layer
        nn.init.normal_(self.predictor.weight, std=0.001)
        if self.predictor.bias is not None:
            nn.init.constant_(self.predictor.bias, 0)
コード例 #2
0
    def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
        super().__init__()

        # fmt: off
        self.in_features = cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
        feature_strides = {k: v.stride for k, v in input_shape.items()}
        feature_channels = {k: v.channels for k, v in input_shape.items()}
        self.ignore_value = cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE
        num_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
        conv_dims = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
        self.common_stride = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE
        norm = cfg.MODEL.SEM_SEG_HEAD.NORM
        self.loss_weight = cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT
        # fmt: on

        self.scale_heads = []
        for in_feature in self.in_features:
            head_ops = []
            head_length = max(
                1,
                int(
                    np.log2(feature_strides[in_feature]) -
                    np.log2(self.common_stride)))
            for k in range(head_length):
                norm_module = nn.GroupNorm(32,
                                           conv_dims) if norm == "GN" else None
                conv = Conv2d(
                    feature_channels[in_feature] if k == 0 else conv_dims,
                    conv_dims,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=not norm,
                    norm=norm_module,
                    activation=F.relu,
                )
                weight_init.c2_msra_fill(conv)
                head_ops.append(conv)
                if feature_strides[in_feature] != self.common_stride:
                    head_ops.append(
                        nn.Upsample(scale_factor=2,
                                    mode="bilinear",
                                    align_corners=False))
            self.scale_heads.append(nn.Sequential(*head_ops))
            self.add_module(in_feature, self.scale_heads[-1])
        self.predictor = Conv2d(conv_dims,
                                num_classes,
                                kernel_size=1,
                                stride=1,
                                padding=0)
        weight_init.c2_msra_fill(self.predictor)
コード例 #3
0
    def __init__(self, cfg, input_shape: ShapeSpec):
        """
        The following attributes are parsed from config:
            num_conv, num_fc: the number of conv/fc layers
            conv_dim/fc_dim: the dimension of the conv/fc layers
            norm: normalization for the conv layers
        """
        super().__init__()

        # fmt: off
        num_conv = cfg.MODEL.ROI_BOX_HEAD.NUM_CONV
        conv_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_DIM
        num_fc = cfg.MODEL.ROI_BOX_HEAD.NUM_FC
        fc_dim = cfg.MODEL.ROI_BOX_HEAD.FC_DIM
        norm = cfg.MODEL.ROI_BOX_HEAD.NORM
        # fmt: on
        assert num_conv + num_fc > 0

        self._output_size = (input_shape.channels, input_shape.height,
                             input_shape.width)

        self.conv_norm_relus = []
        for k in range(num_conv):
            conv = Conv2d(
                self._output_size[0],
                conv_dim,
                kernel_size=3,
                padding=1,
                bias=not norm,
                norm=get_norm(norm, conv_dim),
                activation=F.relu,
            )
            self.add_module("conv{}".format(k + 1), conv)
            self.conv_norm_relus.append(conv)
            self._output_size = (conv_dim, self._output_size[1],
                                 self._output_size[2])

        self.fcs = []
        for k in range(num_fc):
            fc = nn.Linear(np.prod(self._output_size), fc_dim)
            self.add_module("fc{}".format(k + 1), fc)
            self.fcs.append(fc)
            self._output_size = fc_dim

        for layer in self.conv_norm_relus:
            weight_init.c2_msra_fill(layer)
        for layer in self.fcs:
            weight_init.c2_xavier_fill(layer)
コード例 #4
0
    def __init__(self, cfg, input_shape: ShapeSpec):
        """
        The following attributes are parsed from config:
            conv_dims: an iterable of output channel counts for each conv in the head
                         e.g. (512, 512, 512) for three convs outputting 512 channels.
            num_keypoints: number of keypoint heatmaps to predicts, determines the number of
                           channels in the final output.
        """
        super(KRCNNConvDeconvUpsampleHead, self).__init__()

        # fmt: off
        # default up_scale to 2 (this can eventually be moved to config)
        up_scale = 2
        conv_dims = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS
        num_keypoints = cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS
        in_channels = input_shape.channels
        # fmt: on

        self.blocks = []
        for idx, layer_channels in enumerate(conv_dims, 1):
            module = Conv2d(in_channels,
                            layer_channels,
                            3,
                            stride=1,
                            padding=1)
            self.add_module("conv_fcn{}".format(idx), module)
            self.blocks.append(module)
            in_channels = layer_channels

        deconv_kernel = 4
        self.score_lowres = ConvTranspose2d(in_channels,
                                            num_keypoints,
                                            deconv_kernel,
                                            stride=2,
                                            padding=deconv_kernel // 2 - 1)
        self.up_scale = up_scale

        for name, param in self.named_parameters():
            if "bias" in name:
                nn.init.constant_(param, 0)
            elif "weight" in name:
                # Caffe2 implementation uses MSRAFill, which in fact
                # corresponds to kaiming_normal_ in PyTorch
                nn.init.kaiming_normal_(param,
                                        mode="fan_out",
                                        nonlinearity="relu")
コード例 #5
0
ファイル: resnet.py プロジェクト: gunsal15/interesting_videos
 def __init__(self, in_channels=3, out_channels=64, norm="BN"):
     """
     Args:
         norm (str or callable): a callable that takes the number of
             channels and return a `nn.Module`, or a pre-defined string
             (one of {"FrozenBN", "BN", "GN"}).
     """
     super().__init__()
     self.conv1 = Conv2d(
         in_channels,
         out_channels,
         kernel_size=7,
         stride=2,
         padding=3,
         bias=False,
         norm=get_norm(norm, out_channels),
     )
     weight_init.c2_msra_fill(self.conv1)
コード例 #6
0
ファイル: resnet.py プロジェクト: gunsal15/interesting_videos
    def __init__(
        self,
        in_channels,
        out_channels,
        *,
        bottleneck_channels,
        stride=1,
        num_groups=1,
        norm="BN",
        stride_in_1x1=False,
        dilation=1,
    ):
        """
        Args:
            norm (str or callable): a callable that takes the number of
                channels and return a `nn.Module`, or a pre-defined string
                (one of {"FrozenBN", "BN", "GN"}).
            stride_in_1x1 (bool): when stride==2, whether to put stride in the
                first 1x1 convolution or the bottleneck 3x3 convolution.
        """
        super().__init__(in_channels, out_channels, stride)

        if in_channels != out_channels:
            self.shortcut = Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride,
                bias=False,
                norm=get_norm(norm, out_channels),
            )
        else:
            self.shortcut = None

        # The original MSRA ResNet models have stride in the first 1x1 conv
        # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
        # stride in the 3x3 conv
        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)

        self.conv1 = Conv2d(
            in_channels,
            bottleneck_channels,
            kernel_size=1,
            stride=stride_1x1,
            bias=False,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv2 = Conv2d(
            bottleneck_channels,
            bottleneck_channels,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            bias=False,
            groups=num_groups,
            dilation=dilation,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv3 = Conv2d(
            bottleneck_channels,
            out_channels,
            kernel_size=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

        for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
            if layer is not None:  # shortcut can be None
                weight_init.c2_msra_fill(layer)
コード例 #7
0
ファイル: resnet.py プロジェクト: gunsal15/interesting_videos
    def __init__(
        self,
        in_channels,
        out_channels,
        *,
        bottleneck_channels,
        stride=1,
        num_groups=1,
        norm="BN",
        stride_in_1x1=False,
        dilation=1,
        deform_modulated=False,
        deform_num_groups=1,
    ):
        """
        Similar to :class:`BottleneckBlock`, but with deformable conv in the 3x3 convolution.
        """
        super().__init__(in_channels, out_channels, stride)
        self.deform_modulated = deform_modulated

        if in_channels != out_channels:
            self.shortcut = Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride,
                bias=False,
                norm=get_norm(norm, out_channels),
            )
        else:
            self.shortcut = None

        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)

        self.conv1 = Conv2d(
            in_channels,
            bottleneck_channels,
            kernel_size=1,
            stride=stride_1x1,
            bias=False,
            norm=get_norm(norm, bottleneck_channels),
        )

        if deform_modulated:
            deform_conv_op = ModulatedDeformConv
            # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size
            offset_channels = 27
        else:
            deform_conv_op = DeformConv
            offset_channels = 18

        self.conv2_offset = Conv2d(
            bottleneck_channels,
            offset_channels * deform_num_groups,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            dilation=dilation,
        )
        self.conv2 = deform_conv_op(
            bottleneck_channels,
            bottleneck_channels,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            bias=False,
            groups=num_groups,
            dilation=dilation,
            deformable_groups=deform_num_groups,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv3 = Conv2d(
            bottleneck_channels,
            out_channels,
            kernel_size=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

        for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
            if layer is not None:  # shortcut can be None
                weight_init.c2_msra_fill(layer)

        nn.init.constant_(self.conv2_offset.weight, 0)
        nn.init.constant_(self.conv2_offset.bias, 0)
コード例 #8
0
ファイル: fpn.py プロジェクト: gunsal15/interesting_videos
    def __init__(self,
                 bottom_up,
                 in_features,
                 out_channels,
                 norm="",
                 top_block=None,
                 fuse_type="sum"):
        """
        Args:
            bottom_up (Backbone): module representing the bottom up subnetwork.
                Must be a subclass of :class:`Backbone`. The multi-scale feature
                maps generated by the bottom up network, and listed in `in_features`,
                are used to generate FPN levels.
            in_features (list[str]): names of the input feature maps coming
                from the backbone to which FPN is attached. For example, if the
                backbone produces ["res2", "res3", "res4"], any *contiguous* sublist
                of these may be used; order must be from high to low resolution.
            out_channels (int): number of channels in the output feature maps.
            norm (str): the normalization to use.
            top_block (nn.Module or None): if provided, an extra operation will
                be performed on the output of the last (smallest resolution)
                FPN output, and the result will extend the result list. The top_block
                further downsamples the feature map. It must have an attribute
                "num_levels", meaning the number of extra FPN levels added by
                this block, and "in_feature", which is a string representing
                its input feature (e.g., p5).
            fuse_type (str): types for fusing the top down features and the lateral
                ones. It can be "sum" (default), which sums up element-wise; or "avg",
                which takes the element-wise mean of the two.
        """
        super(FPN, self).__init__()
        assert isinstance(bottom_up, Backbone)

        # Feature map strides and channels from the bottom up network (e.g. ResNet)
        in_strides = [bottom_up.out_feature_strides[f] for f in in_features]
        in_channels = [bottom_up.out_feature_channels[f] for f in in_features]

        _assert_strides_are_log2_contiguous(in_strides)
        lateral_convs = []
        output_convs = []

        use_bias = norm == ""
        for idx, in_channels in enumerate(in_channels):
            lateral_norm = get_norm(norm, out_channels)
            output_norm = get_norm(norm, out_channels)

            lateral_conv = Conv2d(in_channels,
                                  out_channels,
                                  kernel_size=1,
                                  bias=use_bias,
                                  norm=lateral_norm)
            output_conv = Conv2d(
                out_channels,
                out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=use_bias,
                norm=output_norm,
            )
            weight_init.c2_xavier_fill(lateral_conv)
            weight_init.c2_xavier_fill(output_conv)
            stage = int(math.log2(in_strides[idx]))
            self.add_module("fpn_lateral{}".format(stage), lateral_conv)
            self.add_module("fpn_output{}".format(stage), output_conv)

            lateral_convs.append(lateral_conv)
            output_convs.append(output_conv)
        # Place convs into top-down order (from low to high resolution)
        # to make the top-down computation in forward clearer.
        self.lateral_convs = lateral_convs[::-1]
        self.output_convs = output_convs[::-1]
        self.top_block = top_block
        self.in_features = in_features
        self.bottom_up = bottom_up
        # Return feature names are "p<stage>", like ["p2", "p3", ..., "p6"]
        self._out_feature_strides = {
            "p{}".format(int(math.log2(s))): s
            for s in in_strides
        }
        # top block output feature maps.
        if self.top_block is not None:
            for s in range(stage, stage + self.top_block.num_levels):
                self._out_feature_strides["p{}".format(s + 1)] = 2**(s + 1)

        self._out_features = list(self._out_feature_strides.keys())
        self._out_feature_channels = {
            k: out_channels
            for k in self._out_features
        }
        self._size_divisibility = in_strides[-1]
        assert fuse_type in {"avg", "sum"}
        self._fuse_type = fuse_type