def main(args): cfg = setup(args) # disable strict kwargs checking: allow one to specify path handle # hints through kwargs, like timeout in DP evaluation PathManager.set_strict_kwargs_checking(False) if args.eval_only: model = Trainer.build_model(cfg) print(parameter_count_table(model, max_depth=2)) DensePoseCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) if cfg.TEST.AUG.ENABLED: res.update(Trainer.test_with_TTA(cfg, model)) if comm.is_main_process(): verify_results(cfg, res) return res model = Trainer.build_model(cfg) print(parameter_count_table(model, max_depth=2)) del model trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) if cfg.TEST.AUG.ENABLED: trainer.register_hooks( [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] ) return trainer.train()
def do_parameter(cfg): if isinstance(cfg, CfgNode): model = build_model(cfg) else: model = instantiate(cfg.model) logger.info("Parameter Count:\n" + parameter_count_table(model, max_depth=5))
def do_parameter(cfg): model = build_model(cfg) logger.info("Parameter Count:\n" + parameter_count_table(model, max_depth=5))