コード例 #1
0
 def forward(self, x):
     if self.training:
         with EventStorage() as storage:
             out = self.model(x)
     else:
         self.model.train()
         with torch.no_grad(), EventStorage() as storage:
             out = self.model(x)
         self.model.eval()
     return out
コード例 #2
0
    def train(self, start_iter: int, max_iter: int):
        """
        Args:
            start_iter, max_iter (int): See docs above
        """
        logger = logging.getLogger(__name__)
        logger.info("Starting training from iteration {}".format(start_iter))

        self.iter = self.start_iter = start_iter
        self.max_iter = max_iter

        with EventStorage(start_iter) as self.storage:
            try:
                self.before_train()
                for self.iter in range(start_iter, max_iter):
                    self.before_step()
                    self.run_step()
                    self.after_step()
                # self.iter == max_iter can be used by `after_train` to
                # tell whether the training successfully finished or failed
                # due to exceptions.
                self.iter += 1
            except Exception:
                logger.exception("Exception during training:")
                raise
            finally:
                self.after_train()
コード例 #3
0
ファイル: train_loop.py プロジェクト: HazekiahWon/detectron2
    def train(self, start_iter: int, max_iter: int):
        """
        Args:
            start_iter, max_iter (int): See docs above
        """
        logger = logging.getLogger(__name__)
        logger.info("Starting training from iteration {}".format(start_iter))

        self.iter = self.start_iter = start_iter
        self.max_iter = max_iter
        logger = logging.getLogger(__name__)
        with EventStorage(start_iter) as self.storage:
            try:
                # logger.info('into before train')
                self.before_train()
                logger.info(f'into training {start_iter}->{max_iter}')
                for self.iter in range(start_iter, max_iter):
                    # logger.info(f'{self.iter} stepping')
                    self.before_step()
                    self.run_step()
                    # logger.info('into after step')
                    self.after_step()
                    # logger.info('stepping finish')
            finally:
                # logger.info('finally into after train')
                self.after_train()
コード例 #4
0
ファイル: ComputeLoss.py プロジェクト: zz10001/al_ins_seg
    def train(self, start_iter: int, max_iter: int):
        """
        Args:
            start_iter, max_iter (int): See docs above
        """
        losses = []
        logger = logging.getLogger(__name__)
        logger.info("Starting training from iteration {}".format(start_iter))

        self.iter = self.start_iter = start_iter
        self.max_iter = max_iter
        loss_cnt = 0
        with EventStorage(start_iter) as self.storage:
            try:
                self.before_train()
                for self.iter in range(start_iter, max_iter):
                    self.before_step()
                    loss = self.run_step()
                    losses.append(loss)
                    loss_cnt += 1
                    if loss_cnt % 10 == 0:
                        print("has got {} losses, still need {} ".format(
                            loss_cnt, self.max_iter - loss_cnt))
                    self.after_step()
            finally:
                self.after_train()
        return losses
コード例 #5
0
    def test_load_ema_weights(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
        checkpoint_callback = ModelCheckpoint(dirpath=task.cfg.OUTPUT_DIR,
                                              save_last=True)

        trainer = pl.Trainer(
            max_steps=1,
            limit_train_batches=1,
            num_sanity_val_steps=0,
            callbacks=[checkpoint_callback],
        )

        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # load EMA weights from checkpoint
        task2 = GeneralizedRCNNTask.load_from_checkpoint(
            os.path.join(tmp_dir, "last.ckpt"))
        self.assertTrue(
            self._compare_state_dict(task.ema_state.state_dict(),
                                     task2.ema_state.state_dict()))

        # apply EMA weights to model
        task2.ema_state.apply_to(task2.model)
        self.assertTrue(
            self._compare_state_dict(task.ema_state.state_dict(),
                                     task2.model.state_dict()))
コード例 #6
0
    def test_fast_rcnn(self):
        torch.manual_seed(132)

        box_head_output_size = 8

        box_predictor = FastRCNNOutputLayers(
            ShapeSpec(channels=box_head_output_size),
            box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)),
            num_classes=5,
        )
        feature_pooled = torch.rand(2, box_head_output_size)
        predictions = box_predictor(feature_pooled)

        proposal_boxes = torch.tensor([[0.8, 1.1, 3.2, 2.8], [2.3, 2.5, 7, 8]],
                                      dtype=torch.float32)
        gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]],
                                dtype=torch.float32)
        proposal = Instances((10, 10))
        proposal.proposal_boxes = Boxes(proposal_boxes)
        proposal.gt_boxes = Boxes(gt_boxes)
        proposal.gt_classes = torch.tensor([1, 2])

        with EventStorage():  # capture events in a new storage to discard them
            losses = box_predictor.losses(predictions, [proposal])

        expected_losses = {
            "loss_cls": torch.tensor(1.7951188087),
            "loss_box_reg": torch.tensor(4.0357131958),
        }
        for name in expected_losses.keys():
            assert torch.allclose(losses[name], expected_losses[name])
コード例 #7
0
    def test_fast_rcnn_rotated(self):
        torch.manual_seed(132)
        box_head_output_size = 8

        box_predictor = RotatedFastRCNNOutputLayers(
            ShapeSpec(channels=box_head_output_size),
            box2box_transform=Box2BoxTransformRotated(weights=(10, 10, 5, 5,
                                                               1)),
            num_classes=5,
        )
        feature_pooled = torch.rand(2, box_head_output_size)
        predictions = box_predictor(feature_pooled)
        proposal_boxes = torch.tensor(
            [[2, 1.95, 2.4, 1.7, 0], [4.65, 5.25, 4.7, 5.5, 0]],
            dtype=torch.float32)
        gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]],
                                dtype=torch.float32)
        proposal = Instances((10, 10))
        proposal.proposal_boxes = RotatedBoxes(proposal_boxes)
        proposal.gt_boxes = RotatedBoxes(gt_boxes)
        proposal.gt_classes = torch.tensor([1, 2])

        with EventStorage():  # capture events in a new storage to discard them
            losses = box_predictor.losses(predictions, [proposal])

        # Note: the expected losses are slightly different even if
        # the boxes are essentially the same as in the FastRCNNOutput test, because
        # bbox_pred in FastRCNNOutputLayers have different Linear layers/initialization
        # between the two cases.
        expected_losses = {
            "loss_cls": torch.tensor(1.7920907736),
            "loss_box_reg": torch.tensor(4.0410838127),
        }
        for name in expected_losses.keys():
            assert torch.allclose(losses[name], expected_losses[name])
コード例 #8
0
    def initialize_from_support(trainer_self):

        class_means = defaultdict(list)
        class_activations = defaultdict(list)

        print('Computing support set centroids')

        # Make sure this doesn't break on multigpu
        # Disable default Collate function
        support_loader = torch.utils.data.DataLoader(
            trainer_self.data_loader.dataset.dataset,
            batch_size=trainer_self.data_loader.batch_size,
            shuffle=False,
            num_workers=4,
            collate_fn=lambda x: x)

        with EventStorage() as storage:

            for i, batched_inputs in enumerate(support_loader):
                #for i, batched_inputs in enumerate(trainer_self.data_loader):

                print('Processed {} batches'.format(i))

                self = trainer_self.model
                images = self.preprocess_image(batched_inputs)
                gt_instances = [
                    x["instances"].to(self.device) for x in batched_inputs
                ]
                features = self.backbone(images.tensor)

                proposals, proposal_losses = self.proposal_generator(
                    images, features, gt_instances)
                proposals = self.roi_heads.label_and_sample_proposals(
                    proposals, gt_instances)
                # Average box deatures here
                gt_as_proposals = append_gt_as_proposal(gt_instances)
                losses, box_features = self.roi_heads._forward_box(
                    features,
                    gt_as_proposals,
                    gt_instances,
                    return_box_features=True)

                box_features_idx = 0
                for instances in gt_as_proposals:
                    for gt_class in instances.gt_classes:
                        category_id = gt_class.item()
                        activation = box_features[box_features_idx]
                        class_activations[category_id].append(
                            activation.detach().cpu())
                        box_features_idx += 1

        for category_id in class_activations:
            class_activations[category_id] = torch.stack(
                class_activations[category_id])
            class_means[category_id] = class_activations[category_id].mean(
                dim=0)
            print('Category: #{}, shape: {}'.format(
                category_id, class_activations[category_id].size()))

        pass
コード例 #9
0
ファイル: detector.py プロジェクト: Flyfoxs/lung_classify
    def train(self, patience=3):
        """
        Args:
            start_iter, max_iter (int): See docs above
        """
        logger = logging.getLogger(__name__)
        logger.info("Starting training from iteration {}".format(
            self.start_iter))

        self.iter = start_iter = self.start_iter
        max_iter = self.max_iter = self.cfg.SOLVER.MAX_ITER

        from detectron2.utils.events import EventStorage
        with EventStorage(start_iter) as self.storage:
            try:
                self.before_train()
                print('start_iter, max_iter', start_iter, max_iter)
                for self.iter in range(start_iter, max_iter):
                    self.before_step()
                    self.run_step()
                    self.after_step()
                    if (self.iter + 1
                        ) % self.cfg.TEST.EVAL_PERIOD == 0 and self.early_stop(
                            patience):
                        break
            finally:
                self.after_train()
コード例 #10
0
    def training_step(self, batch, batch_idx):
        data_time = time.perf_counter() - self.data_start
        # Need to manually enter/exit since trainer may launch processes
        # This ideally belongs in setup, but setup seems to run before processes are spawned
        if self.storage is None:
            self.storage = EventStorage(0)
            self.storage.__enter__()
            self.iteration_timer.trainer = weakref.proxy(self)
            self.iteration_timer.before_step()
            self.writers = (
                default_writers(self.cfg.OUTPUT_DIR, self.max_iter)
                if comm.is_main_process()
                else {}
            )

        loss_dict = self.model(batch)
        SimpleTrainer.write_metrics(loss_dict, data_time)

        opt = self.optimizers()
        self.storage.put_scalar(
            "lr", opt.param_groups[self._best_param_group_id]["lr"], smoothing_hint=False
        )
        self.iteration_timer.after_step()
        self.storage.step()
        # A little odd to put before step here, but it's the best way to get a proper timing
        self.iteration_timer.before_step()

        if self.storage.iter % 20 == 0:
            for writer in self.writers:
                writer.write()
        return sum(loss_dict.values())
コード例 #11
0
    def test_load_from_checkpoint(self) -> None:
        with tempfile.TemporaryDirectory() as tmp_dir:
            task = GeneralizedRCNNTask(self._get_cfg(tmp_dir))
            from stl.lightning.callbacks.model_checkpoint import ModelCheckpoint
            checkpoint_callback = ModelCheckpoint(
                directory=task.cfg.OUTPUT_DIR, has_user_data=False)
            params = {
                "max_steps": 1,
                "limit_train_batches": 1,
                "num_sanity_val_steps": 0,
                "checkpoint_callback": checkpoint_callback,
            }
            trainer = pl.Trainer(**params)
            with EventStorage() as storage:
                task.storage = storage
                trainer.fit(task)
                ckpt_path = os.path.join(tmp_dir, "test.ckpt")
                trainer.save_checkpoint(ckpt_path)
                self.assertTrue(os.path.exists(ckpt_path))

                # load model weights from checkpoint
                task2 = GeneralizedRCNNTask.load_from_checkpoint(ckpt_path)
                self.assertTrue(
                    self._compare_state_dict(task.model.state_dict(),
                                             task2.model.state_dict()))
コード例 #12
0
ファイル: hooks.py プロジェクト: cpark90/rrrcnn
    def update_stats(self):
        """
        Update the model with precise statistics. Users can manually call this method.
        """
        if self._disabled:
            return

        if self._data_iter is None:
            self._data_iter = iter(self._data_loader)

        def data_loader():
            for num_iter in itertools.count(1):
                if num_iter % 100 == 0:
                    self._logger.info(
                        "Running precise-BN ... {}/{} iterations.".format(num_iter, self._num_iter)
                    )
                # This way we can reuse the same iterator
                yield next(self._data_iter)

        with EventStorage():  # capture events in a new storage to discard them
            self._logger.info(
                "Running precise-BN for {} iterations...  ".format(self._num_iter)
                + "Note that this could produce different statistics every time."
            )
            update_bn_stats(self._model, data_loader(), self._num_iter)
コード例 #13
0
    def test_build_model(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
        trainer = self._get_trainer(tmp_dir)

        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # test building untrained model
        model = GeneralizedRCNNTask.build_model(cfg)
        self.assertTrue(model.training)

        # test loading regular weights
        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertFalse(model.training)
            self.assertTrue(
                self._compare_state_dict(model.state_dict(),
                                         task.model.state_dict()))

        # test loading EMA weights
        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertFalse(model.training)
            self.assertTrue(
                self._compare_state_dict(model.state_dict(),
                                         task.ema_state.state_dict()))
コード例 #14
0
    def test_load_ema_weights(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
        trainer = self._get_trainer(tmp_dir)
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # load EMA weights from checkpoint
        task2 = GeneralizedRCNNTask.load_from_checkpoint(
            os.path.join(tmp_dir, "last.ckpt")
        )
        self.assertTrue(
            self._compare_state_dict(
                task.ema_state.state_dict(), task2.ema_state.state_dict()
            )
        )

        # apply EMA weights to model
        task2.ema_state.apply_to(task2.model)
        self.assertTrue(
            self._compare_state_dict(
                task.ema_state.state_dict(), task2.model.state_dict()
            )
        )
コード例 #15
0
ファイル: test_rpn.py プロジェクト: d-mishra/detectra
    def test_rpn(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "DefaultAnchorGenerator"
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1)
        backbone = build_backbone(cfg)
        proposal_generator = build_proposal_generator(cfg,
                                                      backbone.output_shape())
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        image_shape = (15, 15)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]],
                                dtype=torch.float32)
        gt_instances = Instances(image_shape)
        gt_instances.gt_boxes = Boxes(gt_boxes)
        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, gt_instances)

        expected_losses = {
            "loss_rpn_cls": torch.tensor(0.0804563984),
            "loss_rpn_loc": torch.tensor(0.0990132466),
        }
        for name in expected_losses.keys():
            assert torch.allclose(proposal_losses[name], expected_losses[name])

        expected_proposal_boxes = [
            Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])),
            Boxes(
                torch.tensor([
                    [0, 0, 30, 20],
                    [0, 0, 16.7862777710, 13.1362524033],
                    [0, 0, 30, 13.3173446655],
                    [0, 0, 10.8602609634, 20],
                    [7.7165775299, 0, 27.3875980377, 20],
                ])),
        ]

        expected_objectness_logits = [
            torch.tensor([0.1225359365, -0.0133192837]),
            torch.tensor([
                0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783,
                -0.0428492837
            ]),
        ]

        for i in range(len(image_sizes)):
            assert len(proposals[i]) == len(expected_proposal_boxes[i])
            assert proposals[i].image_size == (image_sizes[i][0],
                                               image_sizes[i][1])
            assert torch.allclose(proposals[i].proposal_boxes.tensor,
                                  expected_proposal_boxes[i].tensor)
            assert torch.allclose(proposals[i].objectness_logits,
                                  expected_objectness_logits[i])
コード例 #16
0
ファイル: test_rpn.py プロジェクト: zhuhui1214/detectron2
    def test_rpn(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        backbone = build_backbone(cfg)
        proposal_generator = RPN(cfg, backbone.output_shape())
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        image_shape = (15, 15)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
        gt_instances = Instances(image_shape)
        gt_instances.gt_boxes = Boxes(gt_boxes)
        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, [gt_instances[0], gt_instances[1]]
            )

        expected_losses = {
            "loss_rpn_cls": torch.tensor(0.0804563984),
            "loss_rpn_loc": torch.tensor(0.0990132466),
        }
        for name in expected_losses.keys():
            err_msg = "proposal_losses[{}] = {}, expected losses = {}".format(
                name, proposal_losses[name], expected_losses[name]
            )
            self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg)

        expected_proposal_boxes = [
            Boxes(torch.tensor([[0, 0, 10, 10], [7.3365392685, 0, 10, 10]])),
            Boxes(
                torch.tensor(
                    [
                        [0, 0, 30, 20],
                        [0, 0, 16.7862777710, 13.1362524033],
                        [0, 0, 30, 13.3173446655],
                        [0, 0, 10.8602609634, 20],
                        [7.7165775299, 0, 27.3875980377, 20],
                    ]
                )
            ),
        ]

        expected_objectness_logits = [
            torch.tensor([0.1225359365, -0.0133192837]),
            torch.tensor([0.1415634006, 0.0989848152, 0.0565387346, -0.0072308783, -0.0428492837]),
        ]

        for proposal, expected_proposal_box, im_size, expected_objectness_logit in zip(
            proposals, expected_proposal_boxes, image_sizes, expected_objectness_logits
        ):
            self.assertEqual(len(proposal), len(expected_proposal_box))
            self.assertEqual(proposal.image_size, im_size)
            self.assertTrue(
                torch.allclose(proposal.proposal_boxes.tensor, expected_proposal_box.tensor)
            )
            self.assertTrue(torch.allclose(proposal.objectness_logits, expected_objectness_logit))
コード例 #17
0
    def test_rroi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
        cfg.MODEL.ROI_HEADS.NAME = "RROIHeads"
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
        cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1)
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]],
                                 dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]],
                                 dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg, feature_shape)
        roi_heads = build_roi_heads(cfg, feature_shape)

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals,
                                           gt_instances)

        detector_losses.update(proposal_losses)
        expected_losses = {
            "loss_cls": 4.365657806396484,
            "loss_box_reg": 0.0015851043863222003,
            "loss_rpn_cls": 0.2427729219198227,
            "loss_rpn_loc": 0.3646621108055115,
        }
        succ = all(
            torch.allclose(detector_losses[name],
                           torch.tensor(expected_losses.get(name, 0.0)))
            for name in detector_losses.keys())
        self.assertTrue(
            succ,
            "Losses has changed! New losses: {}".format(
                {k: v.item()
                 for k, v in detector_losses.items()}),
        )
コード例 #18
0
    def __init__(self, uncertainty=True):
        super(MaskRCNNWithPokeHead, self).__init__(make_rpn50_fpn_config())
        self.poking_head = nn.Sequential(
            nn.Conv2d(256, 64, kernel_size=1, bias=False), nn.BatchNorm2d(64),
            nn.ReLU(), nn.Conv2d(64, 2, kernel_size=1))

        self.poking_loss = MaskPokingLoss(uncertainty)
        self.event_storage = EventStorage()
コード例 #19
0
    def test_roi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5)
        cfg.MODEL.MASK_ON = True
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
        feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]],
                                 dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = Boxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_instance0.gt_masks = BitMasks(torch.rand((2, ) + image_shape) > 0.5)
        gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]],
                                 dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = Boxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instance1.gt_masks = BitMasks(torch.rand((2, ) + image_shape) > 0.5)
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg, feature_shape)
        roi_heads = StandardROIHeads(cfg, feature_shape)

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals,
                                           gt_instances)

        detector_losses.update(proposal_losses)
        expected_losses = {
            "loss_cls": 4.5253729820251465,
            "loss_box_reg": 0.009785720147192478,
            "loss_mask": 0.693184494972229,
            "loss_rpn_cls": 0.08186662942171097,
            "loss_rpn_loc": 0.1104838103055954,
        }
        succ = all(
            torch.allclose(detector_losses[name],
                           torch.tensor(expected_losses.get(name, 0.0)))
            for name in detector_losses.keys())
        self.assertTrue(
            succ,
            "Losses has changed! New losses: {}".format(
                {k: v.item()
                 for k, v in detector_losses.items()}),
        )
コード例 #20
0
    def test_qat(self, tmp_dir):
        @META_ARCH_REGISTRY.register()
        class QuantizableDetMetaArchForTest(mah.DetMetaArchForTest):
            custom_config_dict = {"preserved_attributes": ["preserved_attr"]}

            def __init__(self, cfg):
                super().__init__(cfg)
                self.avgpool.preserved_attr = "foo"
                self.avgpool.not_preserved_attr = "bar"

            def prepare_for_quant(self, cfg):
                example_inputs = (torch.rand(1, 3, 3, 3), )
                self.avgpool = prepare_qat_fx(
                    self.avgpool,
                    {
                        "":
                        set_backend_and_create_qconfig(cfg,
                                                       is_train=self.training)
                    },
                    example_inputs,
                    self.custom_config_dict,
                )
                return self

            def prepare_for_quant_convert(self, cfg):
                self.avgpool = convert_fx(
                    self.avgpool,
                    convert_custom_config_dict=self.custom_config_dict)
                return self

        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL.META_ARCHITECTURE = "QuantizableDetMetaArchForTest"
        cfg.QUANTIZATION.QAT.ENABLED = True
        task = GeneralizedRCNNTask(cfg)

        callbacks = [
            QuantizationAwareTraining.from_config(cfg),
            ModelCheckpoint(dirpath=task.cfg.OUTPUT_DIR, save_last=True),
        ]
        trainer = pl.Trainer(
            max_steps=1,
            limit_train_batches=1,
            num_sanity_val_steps=0,
            callbacks=callbacks,
            logger=False,
        )
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)
        prepared_avgpool = task._prepared.model.avgpool
        self.assertEqual(prepared_avgpool.preserved_attr, "foo")
        self.assertFalse(hasattr(prepared_avgpool, "not_preserved_attr"))

        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertTrue(isinstance(model.avgpool, torch.fx.GraphModule))
コード例 #21
0
def do_train(cfg, model, resume=False):
    model.train()
    optimizer = build_optimizer(cfg, model)
    scheduler = build_lr_scheduler(cfg, optimizer)

    checkpointer = DetectionCheckpointer(
        model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
    )
    start_iter = (
        checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
    )
    max_iter = cfg.SOLVER.MAX_ITER

    periodic_checkpointer = PeriodicCheckpointer(
        checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
    )

    writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else []

    # compared to "train_net.py", we do not support accurate timing and
    # precise BN here, because they are not trivial to implement in a small training loop
    data_loader = build_detection_train_loader(cfg)
    logger.info("Starting training from iteration {}".format(start_iter))
    with EventStorage(start_iter) as storage:
        for data, iteration in zip(data_loader, range(start_iter, max_iter)):
            storage.iter = iteration

            loss_dict = model(data)
            losses = sum(loss_dict.values())
            assert torch.isfinite(losses).all(), loss_dict

            loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())
            if comm.is_main_process():
                storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()
            storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
            scheduler.step()

            if (
                cfg.TEST.EVAL_PERIOD > 0
                and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0
                and iteration != max_iter - 1
            ):
                do_test(cfg, model)
                # Compared to "train_net.py", the test results are not dumped to EventStorage
                comm.synchronize()

            if iteration - start_iter > 5 and (
                (iteration + 1) % 20 == 0 or iteration == max_iter - 1
            ):
                for writer in writers:
                    writer.write()
            periodic_checkpointer.step(iteration)
コード例 #22
0
def do_train(cfg, model, resume=False):
    model.train()
    optimizer = optim.Adam(model.parameters(), lr=cfg.SOLVER.BASE_LR)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20], gamma=0.1)

    checkpointer = DetectionCheckpointer(
        model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
    )
    start_iter = (
        checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
    )
    max_iter = cfg.SOLVER.MAX_ITER

    periodic_checkpointer = PeriodicCheckpointer(
        checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
    )

    writers = [
        CommonMetricPrinter(max_iter),
        JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
        TensorboardXWriter(cfg.OUTPUT_DIR)
    ]
    
    data_loader = build_detection_train_loader(cfg)
    logger.info("Starting training from iteration {}".format(start_iter))
    with EventStorage(start_iter) as storage:
        for data, iteration in zip(data_loader, range(start_iter, max_iter)):
            iteration = iteration + 1
            storage.step()

            loss_dict = model(data)
            losses = sum(loss for loss in loss_dict.values())
            assert torch.isfinite(losses).all(), loss_dict

            storage.put_scalars(total_loss=losses, **loss_dict)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()

            storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)

            if (
                cfg.TEST.EVAL_PERIOD > 0
                and iteration % cfg.TEST.EVAL_PERIOD == 0
                and iteration != max_iter
            ):
                do_test(cfg, model)
                scheduler.step()

            if iteration - start_iter > 5 and (iteration % 20 == 0 or iteration == max_iter):
                for writer in writers:
                    writer.write()
            periodic_checkpointer.step(iteration)
コード例 #23
0
 def get_proposals(self, images, features, gt_instances=None):
     with EventStorage():
         if self.detectron.training:
             proposals, _ = self.detectron.proposal_generator(
                 images, features, gt_instances)
             proposals = self.roi_heads_module.label_and_sample_proposals(
                 proposals, gt_instances)
         else:
             proposals, _ = self.detectron.proposal_generator(
                 images, features, None)
     return proposals
コード例 #24
0
 def _test_train(self, input_sizes, instances):
     assert len(input_sizes) == len(instances)
     inputs = [
         create_model_input(torch.rand(3, s[0], s[1]), inst)
         for s, inst in zip(input_sizes, instances)
     ]
     self.model.train()
     with EventStorage():
         losses = self.model(inputs)
         sum(losses.values()).backward()
         del losses
コード例 #25
0
    def test_rroi_heads(self):
        torch.manual_seed(121)
        cfg = get_cfg()
        cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
        cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
        cfg.MODEL.ROI_HEADS.NAME = "RROIHeads"
        cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead"
        cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2
        cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
        cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
        cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated"
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1)
        backbone = build_backbone(cfg)
        num_images = 2
        images_tensor = torch.rand(num_images, 20, 30)
        image_sizes = [(10, 10), (20, 30)]
        images = ImageList(images_tensor, image_sizes)
        num_channels = 1024
        features = {"res4": torch.rand(num_images, num_channels, 1, 2)}

        image_shape = (15, 15)
        gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]],
                                 dtype=torch.float32)
        gt_instance0 = Instances(image_shape)
        gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0)
        gt_instance0.gt_classes = torch.tensor([2, 1])
        gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]],
                                 dtype=torch.float32)
        gt_instance1 = Instances(image_shape)
        gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1)
        gt_instance1.gt_classes = torch.tensor([1, 2])
        gt_instances = [gt_instance0, gt_instance1]

        proposal_generator = build_proposal_generator(cfg,
                                                      backbone.output_shape())
        roi_heads = build_roi_heads(cfg, backbone.output_shape())

        with EventStorage():  # capture events in a new storage to discard them
            proposals, proposal_losses = proposal_generator(
                images, features, gt_instances)
            _, detector_losses = roi_heads(images, features, proposals,
                                           gt_instances)

        expected_losses = {
            "loss_cls": torch.tensor(4.381618499755859),
            "loss_box_reg": torch.tensor(0.0011829272843897343),
        }
        for name in expected_losses.keys():
            err_msg = "detector_losses[{}] = {}, expected losses = {}".format(
                name, detector_losses[name], expected_losses[name])
            self.assertTrue(
                torch.allclose(detector_losses[name], expected_losses[name]),
                err_msg)
コード例 #26
0
def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)
コード例 #27
0
def memory_partition():
    with EventStorage(10) as storage:
        optimizer.zero_grad()
        loss_dict = model(partition_inputs)
        losses = sum(loss_dict.values())
        assert torch.isfinite(losses).all(), loss_dict
        torch.cuda.synchronize()
        start_time = time_()

        losses.backward()
        optimizer.step()

    torch.cuda.synchronize()
    return time_() - start_time
コード例 #28
0
 def testScalar(self):
     with tempfile.TemporaryDirectory(
             prefix="detectron2_tests") as dir, EventStorage() as storage:
         json_file = os.path.join(dir, "test.json")
         writer = JSONWriter(json_file)
         for k in range(60):
             storage.put_scalar("key", k, smoothing_hint=False)
             if (k + 1) % 20 == 0:
                 writer.write()
             storage.step()
         writer.close()
         with open(json_file) as f:
             data = [json.loads(l) for l in f]
             self.assertTrue([int(k["key"]) for k in data] == [19, 39, 59])
コード例 #29
0
    def test_load_from_checkpoint(self, tmp_dir) -> None:
        task = GeneralizedRCNNTask(self._get_cfg(tmp_dir))

        trainer = self._get_trainer(tmp_dir)
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)
            ckpt_path = os.path.join(tmp_dir, "test.ckpt")
            trainer.save_checkpoint(ckpt_path)
            self.assertTrue(os.path.exists(ckpt_path))

            # load model weights from checkpoint
            task2 = GeneralizedRCNNTask.load_from_checkpoint(ckpt_path)
            self.assertTrue(
                self._compare_state_dict(task.model.state_dict(),
                                         task2.model.state_dict()))
コード例 #30
0
    def test_fast_rcnn_rotated(self):
        torch.manual_seed(132)
        cfg = get_cfg()
        cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1)
        box2box_transform = Box2BoxTransformRotated(
            weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS)

        box_head_output_size = 8
        num_classes = 5
        cls_agnostic_bbox_reg = False

        box_predictor = FastRCNNOutputLayers(box_head_output_size,
                                             num_classes,
                                             cls_agnostic_bbox_reg,
                                             box_dim=5)
        feature_pooled = torch.rand(2, box_head_output_size)
        pred_class_logits, pred_proposal_deltas = box_predictor(feature_pooled)
        image_shape = (10, 10)
        proposal_boxes = torch.tensor(
            [[2, 1.95, 2.4, 1.7, 0], [4.65, 5.25, 4.7, 5.5, 0]],
            dtype=torch.float32)
        gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]],
                                dtype=torch.float32)
        result = Instances(image_shape)
        result.proposal_boxes = RotatedBoxes(proposal_boxes)
        result.gt_boxes = RotatedBoxes(gt_boxes)
        result.gt_classes = torch.tensor([1, 2])
        proposals = []
        proposals.append(result)
        smooth_l1_beta = cfg.MODEL.ROI_BOX_HEAD.SMOOTH_L1_BETA

        outputs = FastRCNNOutputs(box2box_transform, pred_class_logits,
                                  pred_proposal_deltas, proposals,
                                  smooth_l1_beta)
        with EventStorage():  # capture events in a new storage to discard them
            losses = outputs.losses()

        # Note: the expected losses are slightly different even if
        # the boxes are essentially the same as in the FastRCNNOutput test, because
        # bbox_pred in FastRCNNOutputLayers have different Linear layers/initialization
        # between the two cases.
        expected_losses = {
            "loss_cls": torch.tensor(1.7920907736),
            "loss_box_reg": torch.tensor(4.0410838127),
        }
        for name in expected_losses.keys():
            assert torch.allclose(losses[name], expected_losses[name])