コード例 #1
0
        def _testRegularizationPenalty(var, l1_scale, l2_scale,
                                       l1_penalty_truth, l2_penalty_truth):
            """Regularization test for a given variable value"""
            with tf.Graph().as_default() as g:
                tf.Variable(var,
                            trainable=True)  # Register variable in the graph

                # Get L1 loss
                l1_hparams = tf.contrib.training.HParams(l1=l1_scale, l2=None)
                l1_penalty = compute_regularization_penalty(l1_hparams)

                # Get L2 loss
                l2_hparams = tf.contrib.training.HParams(l1=None, l2=l2_scale)
                l2_penalty = compute_regularization_penalty(l2_hparams)

                # Get elastic net loss
                elastic_net_hparams = tf.contrib.training.HParams(l1=l1_scale,
                                                                  l2=l2_scale)
                elastic_net_penalty = compute_regularization_penalty(
                    elastic_net_hparams)
                with tf.Session(graph=g) as sess:
                    sess.run([tf.global_variables_initializer()])
                    self.assertAlmostEqual(l1_penalty.eval(), l1_penalty_truth)
                    self.assertAlmostEqual(l2_penalty.eval(), l2_penalty_truth)
                    self.assertAlmostEqual(elastic_net_penalty.eval(),
                                           l1_penalty_truth + l2_penalty_truth)
コード例 #2
0
def compute_loss(hparams, scores, labels, group_size, weight):
    """ Computes ranking/classification loss with regularization """
    if weight is None:
        raise ValueError("weight should not be None")
    return compute_rank_clf_loss(
        hparams, scores, labels, group_size, weight
    ) + tf.reduce_mean(weight) * compute_regularization_penalty(hparams)
コード例 #3
0
    def _testRegularizationPenalty(self, var, l1_scale, l2_scale,
                                   l1_penalty_truth, l2_penalty_truth):
        """Regularization test for a given variable value"""
        # Get L1 loss
        l1_penalty = compute_regularization_penalty(l1_scale, None, [var])

        # Get L2 loss
        l2_penalty = compute_regularization_penalty(None, l2_scale, [var])

        # Get elastic net loss
        elastic_net_penalty = compute_regularization_penalty(
            l1_scale, l2_scale, [var])

        self.assertAlmostEqual(l1_penalty.numpy(),
                               l1_penalty_truth,
                               places=self.places)
        self.assertAlmostEqual(l2_penalty.numpy(),
                               l2_penalty_truth,
                               places=self.places)
        self.assertAlmostEqual(elastic_net_penalty.numpy(),
                               l1_penalty_truth + l2_penalty_truth,
                               places=self.places)