コード例 #1
0
    def test_pull_and_collect(self):
        grid = Grid(shape=(10, 10))
        dt = grid.time_dim.spacing
        hx, _ = grid.spacing_symbols

        u = TimeFunction(name="u", grid=grid)
        v = TimeFunction(name="v", grid=grid)

        eq = Eq(u.forward, ((0.4 + dt) * u.dx + 0.3) * hx + v.dx)
        leq = collect_derivatives.func([eq])[0]

        assert eq != leq
        args = leq.rhs.args
        assert len(args) == 2
        assert diff2sympy(args[0]) == 0.3 * hx
        assert args[1] == (hx * (dt + 0.4) * u + v).dx
コード例 #2
0
ファイル: equation.py プロジェクト: yohanesnuwara/devito
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = sympy.Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i,
                        kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(devito.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = sympy.Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr)

        # Analyze the expression
        mapper = detect_accesses(expr)
        oobs = detect_oobs(mapper)
        conditionals = [i for i in ordering if i.is_Conditional]

        # Construct Intervals for IterationSpace and DataSpace
        intervals = build_intervals(Stencil.union(*mapper.values()))
        iintervals = []  # iteration Intervals
        dintervals = []  # data Intervals
        for i in intervals:
            d = i.dim
            if d in oobs:
                iintervals.append(i.zero())
                dintervals.append(i)
            else:
                iintervals.append(i.zero())
                dintervals.append(i.zero())

        # Construct the IterationSpace
        iintervals = IntervalGroup(iintervals, relations=ordering.relations)
        iterators = build_iterators(mapper)
        ispace = IterationSpace(iintervals, iterators)

        # Construct the DataSpace
        dintervals.extend([
            Interval(i, 0, 0) for i in ordering
            if i not in ispace.dimensions + conditionals
        ])
        parts = {
            k: IntervalGroup(build_intervals(v)).add(iintervals)
            for k, v in mapper.items() if k
        }
        dspace = DataSpace(dintervals, parts)

        # Lower all Differentiable operations into SymPy operations
        rhs = diff2sympy(expr.rhs)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             rhs,
                                             evaluate=False)

        expr._dspace = dspace
        expr._ispace = ispace
        expr._conditionals = tuple(conditionals)
        expr._reads, expr._writes = detect_io(expr)

        expr._is_Increment = input_expr.is_Increment
        expr._implicit_dims = input_expr.implicit_dims

        return expr
コード例 #3
0
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], LoweredEq):
            # origin: LoweredEq(devito.LoweredEq, **kwargs)
            input_expr = args[0]
            expr = sympy.Eq.__new__(cls, *input_expr.args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i,
                        kwargs.get(i) or getattr(input_expr, i))
            return expr
        elif len(args) == 1 and isinstance(args[0], Eq):
            # origin: LoweredEq(devito.Eq)
            input_expr = expr = args[0]
        elif len(args) == 2:
            expr = sympy.Eq.__new__(cls, *args, evaluate=False)
            for i in cls._state:
                setattr(expr, '_%s' % i, kwargs.pop(i))
            return expr
        else:
            raise ValueError("Cannot construct LoweredEq from args=%s "
                             "and kwargs=%s" % (str(args), str(kwargs)))

        # Well-defined dimension ordering
        ordering = dimension_sort(expr)

        # Analyze the expression
        accesses = detect_accesses(expr)
        dimensions = Stencil.union(*accesses.values())

        # Separate out the SubIterators from the main iteration Dimensions, that
        # is those which define an actual iteration space
        iterators = {}
        for d in dimensions:
            if d.is_SubIterator:
                iterators.setdefault(d.root, set()).add(d)
            elif d.is_Conditional:
                # Use `parent`, and `root`, because a ConditionalDimension may
                # have a SubDimension as parent
                iterators.setdefault(d.parent, set())
            else:
                iterators.setdefault(d, set())

        # Construct the IterationSpace
        intervals = IntervalGroup([Interval(d, 0, 0) for d in iterators],
                                  relations=ordering.relations)
        ispace = IterationSpace(intervals, iterators)

        # Construct the conditionals and replace the ConditionalDimensions in `expr`
        conditionals = {}
        for d in ordering:
            if not d.is_Conditional:
                continue
            if d.condition is None:
                conditionals[d] = GuardFactor(d)
            else:
                conditionals[d] = diff2sympy(lower_exprs(d.condition))
            if d.factor is not None:
                expr = uxreplace(expr, {d: IntDiv(d.index, d.factor)})
        conditionals = frozendict(conditionals)

        # Lower all Differentiable operations into SymPy operations
        rhs = diff2sympy(expr.rhs)

        # Finally create the LoweredEq with all metadata attached
        expr = super(LoweredEq, cls).__new__(cls,
                                             expr.lhs,
                                             rhs,
                                             evaluate=False)

        expr._ispace = ispace
        expr._conditionals = conditionals
        expr._reads, expr._writes = detect_io(expr)

        expr._is_Increment = input_expr.is_Increment
        expr._implicit_dims = input_expr.implicit_dims

        return expr