def test_pull_and_collect(self): grid = Grid(shape=(10, 10)) dt = grid.time_dim.spacing hx, _ = grid.spacing_symbols u = TimeFunction(name="u", grid=grid) v = TimeFunction(name="v", grid=grid) eq = Eq(u.forward, ((0.4 + dt) * u.dx + 0.3) * hx + v.dx) leq = collect_derivatives.func([eq])[0] assert eq != leq args = leq.rhs.args assert len(args) == 2 assert diff2sympy(args[0]) == 0.3 * hx assert args[1] == (hx * (dt + 0.4) * u + v).dx
def __new__(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], LoweredEq): # origin: LoweredEq(devito.LoweredEq, **kwargs) input_expr = args[0] expr = sympy.Eq.__new__(cls, *input_expr.args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i)) return expr elif len(args) == 1 and isinstance(args[0], Eq): # origin: LoweredEq(devito.Eq) input_expr = expr = args[0] elif len(args) == 2: expr = sympy.Eq.__new__(cls, *args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.pop(i)) return expr else: raise ValueError("Cannot construct LoweredEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) # Well-defined dimension ordering ordering = dimension_sort(expr) # Analyze the expression mapper = detect_accesses(expr) oobs = detect_oobs(mapper) conditionals = [i for i in ordering if i.is_Conditional] # Construct Intervals for IterationSpace and DataSpace intervals = build_intervals(Stencil.union(*mapper.values())) iintervals = [] # iteration Intervals dintervals = [] # data Intervals for i in intervals: d = i.dim if d in oobs: iintervals.append(i.zero()) dintervals.append(i) else: iintervals.append(i.zero()) dintervals.append(i.zero()) # Construct the IterationSpace iintervals = IntervalGroup(iintervals, relations=ordering.relations) iterators = build_iterators(mapper) ispace = IterationSpace(iintervals, iterators) # Construct the DataSpace dintervals.extend([ Interval(i, 0, 0) for i in ordering if i not in ispace.dimensions + conditionals ]) parts = { k: IntervalGroup(build_intervals(v)).add(iintervals) for k, v in mapper.items() if k } dspace = DataSpace(dintervals, parts) # Lower all Differentiable operations into SymPy operations rhs = diff2sympy(expr.rhs) # Finally create the LoweredEq with all metadata attached expr = super(LoweredEq, cls).__new__(cls, expr.lhs, rhs, evaluate=False) expr._dspace = dspace expr._ispace = ispace expr._conditionals = tuple(conditionals) expr._reads, expr._writes = detect_io(expr) expr._is_Increment = input_expr.is_Increment expr._implicit_dims = input_expr.implicit_dims return expr
def __new__(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], LoweredEq): # origin: LoweredEq(devito.LoweredEq, **kwargs) input_expr = args[0] expr = sympy.Eq.__new__(cls, *input_expr.args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.get(i) or getattr(input_expr, i)) return expr elif len(args) == 1 and isinstance(args[0], Eq): # origin: LoweredEq(devito.Eq) input_expr = expr = args[0] elif len(args) == 2: expr = sympy.Eq.__new__(cls, *args, evaluate=False) for i in cls._state: setattr(expr, '_%s' % i, kwargs.pop(i)) return expr else: raise ValueError("Cannot construct LoweredEq from args=%s " "and kwargs=%s" % (str(args), str(kwargs))) # Well-defined dimension ordering ordering = dimension_sort(expr) # Analyze the expression accesses = detect_accesses(expr) dimensions = Stencil.union(*accesses.values()) # Separate out the SubIterators from the main iteration Dimensions, that # is those which define an actual iteration space iterators = {} for d in dimensions: if d.is_SubIterator: iterators.setdefault(d.root, set()).add(d) elif d.is_Conditional: # Use `parent`, and `root`, because a ConditionalDimension may # have a SubDimension as parent iterators.setdefault(d.parent, set()) else: iterators.setdefault(d, set()) # Construct the IterationSpace intervals = IntervalGroup([Interval(d, 0, 0) for d in iterators], relations=ordering.relations) ispace = IterationSpace(intervals, iterators) # Construct the conditionals and replace the ConditionalDimensions in `expr` conditionals = {} for d in ordering: if not d.is_Conditional: continue if d.condition is None: conditionals[d] = GuardFactor(d) else: conditionals[d] = diff2sympy(lower_exprs(d.condition)) if d.factor is not None: expr = uxreplace(expr, {d: IntDiv(d.index, d.factor)}) conditionals = frozendict(conditionals) # Lower all Differentiable operations into SymPy operations rhs = diff2sympy(expr.rhs) # Finally create the LoweredEq with all metadata attached expr = super(LoweredEq, cls).__new__(cls, expr.lhs, rhs, evaluate=False) expr._ispace = ispace expr._conditionals = conditionals expr._reads, expr._writes = detect_io(expr) expr._is_Increment = input_expr.is_Increment expr._implicit_dims = input_expr.implicit_dims return expr