コード例 #1
0
    def test_fd_space_staggered(self, space_order, stagger):
        """
        This test compares the discrete finite-difference scheme against polynomials
        For a given order p, the finite difference scheme should
        be exact for polynomials of order p
        """
        # dummy axis dimension
        nx = 100
        xx = np.linspace(-1, 1, nx)
        dx = xx[1] - xx[0]
        # Symbolic data
        grid = Grid(shape=(nx, ), dtype=np.float32)
        x = grid.dimensions[0]

        # Location of the staggered function
        if stagger == left:
            off = -.5
            side = -x
            xx2 = xx - off * dx
        elif stagger == right:
            off = .5
            side = x
            xx2 = xx - off * dx
        else:
            off = 0
            side = NODE
            xx2 = xx

        u = Function(name="u",
                     grid=grid,
                     space_order=space_order,
                     staggered=(side, ))
        du = Function(name="du", grid=grid, space_order=space_order)
        # Define polynomial with exact fd
        coeffs = np.ones((space_order - 1, ), dtype=np.float32)
        polynome = sum([coeffs[i] * x**i for i in range(0, space_order - 1)])
        polyvalues = np.array([polynome.subs(x, xi) for xi in xx2], np.float32)
        # Fill original data with the polynomial values
        u.data[:] = polyvalues
        # True derivative of the polynome
        Dpolynome = diff(polynome)
        Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx],
                               np.float32)
        # FD derivative, symbolic
        u_deriv = generic_derivative(u,
                                     deriv_order=1,
                                     fd_order=space_order,
                                     dim=x,
                                     stagger=stagger)
        # Compute numerical FD
        stencil = Eq(du, u_deriv)
        op = Operator(stencil, subs={x.spacing: dx})
        op.apply()

        # Check exactness of the numerical derivative except inside space_brd
        space_border = space_order
        error = abs(du.data[space_border:-space_border] -
                    Dpolyvalues[space_border:-space_border])

        assert np.isclose(np.mean(error), 0., atol=1e-3)
コード例 #2
0
ファイル: test_derivatives.py プロジェクト: opesci/devito
    def test_fd_space_staggered(self, space_order, stagger):
        """
        This test compares the discrete finite-difference scheme against polynomials
        For a given order p, the finite difference scheme should
        be exact for polynomials of order p
        :param derivative: name of the derivative to be tested
        :param space_order: space order of the finite difference stencil
        """
        clear_cache()
        # dummy axis dimension
        nx = 100
        xx = np.linspace(-1, 1, nx)
        dx = xx[1] - xx[0]
        # Symbolic data
        grid = Grid(shape=(nx,), dtype=np.float32)
        x = grid.dimensions[0]

        # Location of the staggered function
        if stagger == left:
            off = -.5
            side = -x
            xx2 = xx - off * dx
        elif stagger == right:
            off = .5
            side = x
            xx2 = xx[:-1] - off * dx
        else:
            off = 0
            side = NODE
            xx2 = xx

        u = Function(name="u", grid=grid, space_order=space_order, staggered=(side,))
        du = Function(name="du", grid=grid, space_order=space_order)
        # Define polynomial with exact fd
        coeffs = np.ones((space_order-1,), dtype=np.float32)
        polynome = sum([coeffs[i]*x**i for i in range(0, space_order-1)])
        polyvalues = np.array([polynome.subs(x, xi) for xi in xx2], np.float32)
        # Fill original data with the polynomial values
        u.data[:] = polyvalues
        # True derivative of the polynome
        Dpolynome = diff(polynome)
        Dpolyvalues = np.array([Dpolynome.subs(x, xi) for xi in xx], np.float32)
        # FD derivative, symbolic
        u_deriv = generic_derivative(u, deriv_order=1, fd_order=space_order,
                                     dim=x, stagger=stagger)
        # Compute numerical FD
        stencil = Eq(du, u_deriv)
        op = Operator(stencil, subs={x.spacing: dx})
        op.apply()

        # Check exactness of the numerical derivative except inside space_brd
        space_border = space_order
        error = abs(du.data[space_border:-space_border] -
                    Dpolyvalues[space_border:-space_border])

        assert np.isclose(np.mean(error), 0., atol=1e-3)
コード例 #3
0
def gaussian_smooth(f, sigma=1, truncate=4.0, mode='reflect'):
    """
    Gaussian smooth function.

    Parameters
    ----------
    f : Function
        The left-hand side of the smoothing kernel, that is the smoothed Function.
    sigma : float, optional
        Standard deviation. Default is 1.
    truncate : float, optional
        Truncate the filter at this many standard deviations. Default is 4.0.
    mode : str, optional
        The function initialisation mode. 'constant' and 'reflect' are
        accepted. Default mode is 'reflect'.
    """
    class ObjectiveDomain(dv.SubDomain):

        name = 'objective_domain'

        def __init__(self, lw):
            super(ObjectiveDomain, self).__init__()
            self.lw = lw

        def define(self, dimensions):
            return {d: ('middle', l, l) for d, l in zip(dimensions, self.lw)}

    def create_gaussian_weights(sigma, lw):
        weights = [
            w / w.sum()
            for w in (np.exp(-0.5 / s**2 * (np.linspace(-l, l, 2 * l + 1))**2)
                      for s, l in zip(sigma, lw))
        ]
        processed = []
        for w in weights:
            temp = list(w)
            while len(temp) < 2 * max(lw) + 1:
                temp.insert(0, 0)
                temp.append(0)
            processed.append(np.array(temp))
        return as_tuple(processed)

    def fset(f, g):
        indices = [slice(l, -l, 1) for _, l in zip(g.dimensions, lw)]
        slices = (slice(None, None, 1), ) * g.ndim
        if isinstance(f, np.ndarray):
            f[slices] = g.data[tuple(indices)]
        elif isinstance(f, dv.Function):
            f.data[slices] = g.data[tuple(indices)]
        else:
            raise NotImplementedError

    try:
        # NOTE: required if input is an np.array
        dtype = f.dtype.type
        shape = f.shape
    except AttributeError:
        dtype = f.dtype
        shape = f.shape_global

    # TODO: Add s = 0 dim skip option
    lw = tuple(int(truncate * float(s) + 0.5) for s in as_tuple(sigma))

    if len(lw) == 1 and len(lw) < f.ndim:
        lw = f.ndim * (lw[0], )
        sigma = f.ndim * (as_tuple(sigma)[0], )
    elif len(lw) == f.ndim:
        sigma = as_tuple(sigma)
    else:
        raise ValueError("`sigma` must be an integer or a tuple of length" +
                         " `f.ndim`.")

    # Create the padded grid:
    objective_domain = ObjectiveDomain(lw)
    shape_padded = tuple([np.array(s) + 2 * l for s, l in zip(shape, lw)])
    grid = dv.Grid(shape=shape_padded, subdomains=objective_domain)

    f_c = dv.Function(name='f_c',
                      grid=grid,
                      space_order=2 * max(lw),
                      coefficients='symbolic',
                      dtype=dtype)
    f_o = dv.Function(name='f_o', grid=grid, dtype=dtype)

    weights = create_gaussian_weights(sigma, lw)

    mapper = {}
    for d, l, w in zip(f_c.dimensions, lw, weights):
        lhs = []
        rhs = []
        options = []

        lhs.append(f_o)
        rhs.append(dv.generic_derivative(f_c, d, 2 * l, 1))
        coeffs = dv.Coefficient(1, f_c, d, w)
        options.append({
            'coefficients': dv.Substitutions(coeffs),
            'subdomain': grid.subdomains['objective_domain']
        })

        lhs.append(f_c)
        rhs.append(f_o)
        options.append({'subdomain': grid.subdomains['objective_domain']})

        mapper[d] = {'lhs': lhs, 'rhs': rhs, 'options': options}

    # Note: we impose the smoother runs on the host as there's generally not
    # enough parallelism to be performant on a device
    platform = 'cpu64'

    initialize_function(f_c,
                        f,
                        lw,
                        mapper=mapper,
                        mode='reflect',
                        name='smooth',
                        platform=platform)

    fset(f, f_c)
    return f
コード例 #4
0
ファイル: builtins.py プロジェクト: lapps-ufrn/devito
def gaussian_smooth(f, sigma=1, _order=4, mode='reflect'):
    """
    Gaussian smooth function.
    """
    class ObjectiveDomain(dv.SubDomain):

        name = 'objective_domain'

        def __init__(self, lw):
            super(ObjectiveDomain, self).__init__()
            self.lw = lw

        def define(self, dimensions):
            return {d: ('middle', self.lw, self.lw) for d in dimensions}

    def fset(f, g):
        indices = [slice(lw, -lw, 1) for _ in g.grid.dimensions]
        slices = (slice(None, None, 1), ) * len(g.grid.dimensions)
        if isinstance(f, np.ndarray):
            f[slices] = g.data[tuple(indices)]
        elif isinstance(f, dv.Function):
            f.data[slices] = g.data[tuple(indices)]
        else:
            raise NotImplementedError

    lw = int(_order * sigma + 0.5)

    # Create the padded grid:
    objective_domain = ObjectiveDomain(lw)
    try:
        shape_padded = np.array(f.grid.shape) + 2 * lw
    except AttributeError:
        shape_padded = np.array(f.shape) + 2 * lw
    grid = dv.Grid(shape=shape_padded, subdomains=objective_domain)

    f_c = dv.Function(name='f_c',
                      grid=grid,
                      space_order=2 * lw,
                      coefficients='symbolic',
                      dtype=np.int32)
    f_o = dv.Function(name='f_o',
                      grid=grid,
                      coefficients='symbolic',
                      dtype=np.int32)

    weights = np.exp(-0.5 / sigma**2 * (np.linspace(-lw, lw, 2 * lw + 1))**2)
    weights = weights / weights.sum()

    mapper = {}
    for d in f_c.dimensions:
        lhs = []
        rhs = []
        options = []

        lhs.append(f_o)
        rhs.append(dv.generic_derivative(f_c, d, 2 * lw, 1))
        coeffs = dv.Coefficient(1, f_c, d, weights)
        options.append({
            'coefficients': dv.Substitutions(coeffs),
            'subdomain': grid.subdomains['objective_domain']
        })
        lhs.append(f_c)
        rhs.append(f_o)
        options.append({'subdomain': grid.subdomains['objective_domain']})

        mapper[d] = {'lhs': lhs, 'rhs': rhs, 'options': options}

    initialize_function(f_c,
                        f.data[:],
                        lw,
                        mapper=mapper,
                        mode='reflect',
                        name='smooth')

    fset(f, f_c)

    return f