コード例 #1
0
    def test_scheduling_sparse_functions(self):
        """Tests loop scheduling in presence of sparse functions."""
        grid = Grid((10, 10))
        time = grid.time_dim

        u1 = TimeFunction(name="u1", grid=grid, save=10, time_order=2)
        u2 = TimeFunction(name="u2", grid=grid, time_order=2)
        sf1 = SparseFunction(name='sf1', grid=grid, npoint=1, ntime=10)
        sf2 = SparseFunction(name='sf2', grid=grid, npoint=1, ntime=10)

        # Deliberately inject into u1, rather than u1.forward, to create a WAR w/ eqn3
        eqn1 = Eq(u1.forward, u1 + 2.0 - u1.backward)
        eqn2 = sf1.inject(u1, expr=sf1)
        eqn3 = Eq(u2.forward, u2 + 2*u2.backward - u1.dt2)
        eqn4 = sf2.interpolate(u2)

        op = Operator([eqn1] + eqn2 + [eqn3] + eqn4)
        trees = retrieve_iteration_tree(op)
        assert len(trees) == 4
        # Time loop not shared due to the WAR
        assert trees[0][0].dim is time and trees[0][0] is trees[1][0]  # this IS shared
        assert trees[1][0] is not trees[2][0]
        assert trees[2][0].dim is time and trees[2][0] is trees[3][0]  # this IS shared

        # Now single, shared time loop expected
        eqn2 = sf1.inject(u1.forward, expr=sf1)
        op = Operator([eqn1] + eqn2 + [eqn3] + eqn4)
        trees = retrieve_iteration_tree(op)
        assert len(trees) == 4
        assert all(trees[0][0] is i[0] for i in trees)
コード例 #2
0
ファイル: test_adjoint.py プロジェクト: mmohrhard/devito
    def test_adjoint_inject_interpolate(self, shape, coords, npoints=19):
        """
        Verify that p.inject is the adjoint of p.interpolate for a
        devito SparseFunction p
        """
        grid = Grid(shape)
        a = Function(name="a", grid=grid)
        a.data[:] = 0.
        c = Function(name='c', grid=grid)
        c.data[:] = 27.

        assert a.grid == c.grid
        # Inject receiver
        p = SparseFunction(name="p", grid=grid, npoint=npoints)
        for i, r in enumerate(coords):
            p.coordinates.data[:, i] = np.linspace(r[0], r[1], npoints)
        p.data[:] = 1.2
        expr = p.inject(field=a, expr=p)
        # Read receiver
        p2 = SparseFunction(name="p2", grid=grid, npoint=npoints)
        for i, r in enumerate(coords):
            p2.coordinates.data[:, i] = np.linspace(r[0], r[1], npoints)
        expr2 = p2.interpolate(expr=c)
        Operator(expr + expr2)(a=a, c=c)
        # < P x, y > - < x, P^T y>
        # Px => p2
        # y => p
        # x => c
        # P^T y => a
        term1 = np.dot(p2.data.reshape(-1), p.data.reshape(-1))
        term2 = np.dot(c.data.reshape(-1), a.data.reshape(-1))
        assert np.isclose((term1-term2) / term1, 0., atol=1.e-6)
コード例 #3
0
    def test_override_composite_data(self):
        i, j = dimify('i j')
        grid = Grid(shape=(10, 10), dimensions=(i, j))
        original_coords = (1., 1.)
        new_coords = (2., 2.)
        p_dim = Dimension('p_src')
        u = TimeFunction(name='u', grid=grid, time_order=2, space_order=2)
        src1 = SparseFunction(name='src1',
                              grid=grid,
                              dimensions=[time, p_dim],
                              npoint=1,
                              nt=10,
                              coordinates=original_coords)
        src2 = SparseFunction(name='src1',
                              grid=grid,
                              dimensions=[time, p_dim],
                              npoint=1,
                              nt=10,
                              coordinates=new_coords)
        op = Operator(src1.inject(u, src1))

        # Move the source from the location where the setup put it so we can test
        # whether the override picks up the original coordinates or the changed ones

        # Operator.arguments() returns a tuple of (data, dimension_sizes)
        args = op.arguments(src1=src2)[0]
        arg_name = src1.name + "_coords"
        assert (np.array_equal(args[arg_name], np.asarray((new_coords, ))))
コード例 #4
0
    def test_injection_wodup(self):
        """
        Test injection operator when the sparse points don't need to be replicated
        ("wodup" -> w/o duplication) over multiple MPI ranks.
        """
        grid = Grid(shape=(4, 4), extent=(3.0, 3.0))

        f = Function(name='f', grid=grid, space_order=0)
        f.data[:] = 0.
        if grid.distributor.myrank == 0:
            coords = [(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)]
        else:
            coords = []
        sf = SparseFunction(name='sf',
                            grid=grid,
                            npoint=len(coords),
                            coordinates=coords)
        sf.data[:] = 4.

        # This is the situation at this point
        # O is a grid point
        # * is a sparse point
        #
        # O --- O --- O --- O
        # |  *  |     |  *  |
        # O --- O --- O --- O
        # |     |     |     |
        # O --- O --- O --- O
        # |  *  |     |  *  |
        # O --- O --- O --- O

        op = Operator(sf.inject(field=f, expr=sf + 1))
        op.apply()

        assert np.all(f.data == 1.25)
コード例 #5
0
    def test_injection_dup(self):
        """
        Test injection operator when the sparse points are replicated over
        multiple MPI ranks.
        """
        grid = Grid(shape=(4, 4), extent=(3.0, 3.0))
        x, y = grid.dimensions

        f = Function(name='f', grid=grid)
        f.data[:] = 0.
        if grid.distributor.myrank == 0:
            coords = [(0.5, 0.5), (1.5, 2.5), (1.5, 1.5), (2.5, 1.5)]
        else:
            coords = []
        sf = SparseFunction(name='sf',
                            grid=grid,
                            npoint=len(coords),
                            coordinates=coords)
        sf.data[:] = 4.

        # Global view (left) and local view (right, after domain decomposition)
        # O is a grid point
        # x is a halo point
        # A, B, C, D are sparse points
        #                               Rank0           Rank1
        # O --- O --- O --- O           O --- O --- x   x --- O --- O
        # |  A  |     |     |           |  A  |     |   |     |     |
        # O --- O --- O --- O           O --- O --- x   x --- O --- O
        # |     |  C  |  B  |     -->   |     |  C  |   |  C  |  B  |
        # O --- O --- O --- O           x --- x --- x   x --- x --- x
        # |     |  D  |     |           Rank2           Rank3
        # O --- O --- O --- O           x --- x --- x   x --- x --- x
        #                               |     |  C  |   |  C  |  B  |
        #                               O --- O --- x   x --- O --- O
        #                               |     |  D  |   |  D  |     |
        #                               O --- O --- x   x --- O --- O
        #
        # Expected `f.data` (global view)
        #
        # 1.25 --- 1.25 --- 0.00 --- 0.00
        #  |        |        |        |
        # 1.25 --- 2.50 --- 2.50 --- 1.25
        #  |        |        |        |
        # 0.00 --- 2.50 --- 3.75 --- 1.25
        #  |        |        |        |
        # 0.00 --- 1.25 --- 1.25 --- 0.00

        op = Operator(sf.inject(field=f, expr=sf + 1))
        op.apply()

        glb_pos_map = grid.distributor.glb_pos_map
        if LEFT in glb_pos_map[x] and LEFT in glb_pos_map[y]:  # rank0
            assert np.all(f.data_ro_domain == [[1.25, 1.25], [1.25, 2.5]])
        elif LEFT in glb_pos_map[x] and RIGHT in glb_pos_map[y]:  # rank1
            assert np.all(f.data_ro_domain == [[0., 0.], [2.5, 1.25]])
        elif RIGHT in glb_pos_map[x] and LEFT in glb_pos_map[y]:
            assert np.all(f.data_ro_domain == [[0., 2.5], [0., 1.25]])
        elif RIGHT in glb_pos_map[x] and RIGHT in glb_pos_map[y]:
            assert np.all(f.data_ro_domain == [[3.75, 1.25], [1.25, 0.]])
コード例 #6
0
    def test_sparse_function(self, operate_on_empty_cache):
        """Test caching of SparseFunctions and children objects."""
        grid = Grid(shape=(3, 3))

        init_cache_size = len(_SymbolCache)
        cur_cache_size = len(_SymbolCache)

        u = SparseFunction(name='u', grid=grid, npoint=1, nt=10)

        # created: u, u(inds), p_u, h_p_u, u_coords, u_coords(inds), d, h_d
        ncreated = 8
        assert len(_SymbolCache) == cur_cache_size + ncreated

        cur_cache_size = len(_SymbolCache)

        i = u.inject(expr=u, field=u)

        # created: ii_u_0*2 (Symbol and ConditionalDimension), ii_u_1*2, ii_u_2*2,
        # ii_u_3*2, px, py, posx, posy, u_coords (as indexified),
        ncreated = 2+2+2+2+2+1+1+1
        # Note that injection is now lazy so no new symbols should be created
        assert len(_SymbolCache) == cur_cache_size
        i.evaluate

        assert len(_SymbolCache) == cur_cache_size + ncreated

        # No new symbolic obejcts are created
        u.inject(expr=u, field=u)
        assert len(_SymbolCache) == cur_cache_size + ncreated

        # Let's look at clear_cache now
        del u
        del i
        clear_cache()
        # At this point, not all children objects have been cleared. In particular, the
        # ii_u_* Symbols are still alive, as well as p_u and h_p_u. This is because
        # in the first clear_cache they were still referenced by their "parent" objects
        # (e.g., ii_u_* by ConditionalDimensions, through `condition`)
        assert len(_SymbolCache) == init_cache_size + 8
        clear_cache()
        # Now we should be back to the original state
        assert len(_SymbolCache) == init_cache_size
コード例 #7
0
def test_scheduling_after_rewrite():
    """Tests loop scheduling after DSE-induced expression hoisting."""
    grid = Grid((10, 10))
    u1 = TimeFunction(name="u1", grid=grid, save=10, time_order=2)
    u2 = TimeFunction(name="u2", grid=grid, time_order=2)
    sf1 = SparseFunction(name='sf1', grid=grid, npoint=1, ntime=10)
    const = Function(name="const", grid=grid, space_order=2)

    # Deliberately inject into u1, rather than u1.forward, to create a WAR
    eqn1 = Eq(u1.forward, u1 + sin(const))
    eqn2 = sf1.inject(u1.forward, expr=sf1)
    eqn3 = Eq(u2.forward, u2 - u1.dt2 + sin(const))

    op = Operator([eqn1] + eqn2 + [eqn3])
    trees = retrieve_iteration_tree(op)

    # Check loop nest structure
    assert len(trees) == 4
    assert all(i.dim == j for i, j in zip(trees[0], grid.dimensions))  # time invariant
    assert trees[1][0].dim == trees[2][0].dim == trees[3][0].dim == grid.time_dim