コード例 #1
0
 async def test_00_train(self):
     await train(
         self.model,
         DirectorySource(
             foldername=str(self.traindir) + "/rps",
             feature="image",
             labels=["rock", "paper", "scissors"],
         ),
     )
コード例 #2
0
 async def test_01_accuracy(self):
     acc = await accuracy(
         self.model,
         DirectorySource(
             foldername=str(self.testdir) + "/rps-test-set",
             feature="image",
             labels=["rock", "paper", "scissors"],
         ),
     )
     self.assertGreater(acc, 0)
コード例 #3
0
    async def test_02_predict(self):
        target = self.model.config.predict.name
        predict_value = 0
        async for key, features, prediction in predict(
            self.model,
            DirectorySource(foldername=str(self.predictdir), feature="image",),
        ):
            pred = prediction
            break

        self.assertTrue(pred)
        self.assertTrue(pred[target])
        results = pred[target]
        self.assertIn("value", results)
        self.assertIn("confidence", results)
        self.assertIn(results["value"], self.model.config.classifications)
        self.assertTrue(results["confidence"])
コード例 #4
0
ファイル: python_example.py プロジェクト: sidhu1012/dffml
    directory="rps_model",
    network=RockPaperScissorsModel,
    epochs=10,
    batch_size=32,
    imageSize=150,
    validation_split=0.2,
    loss=Loss,
    optimizer="Adam",
    enableGPU=True,
    patience=2,
)

# Define source for training image dataset
train_source = DirectorySource(
    foldername="rps",
    feature="image",
    labels=["rock", "paper", "scissors"],
)

# Define source for testing image dataset
test_source = DirectorySource(
    foldername="rps-test-set",
    feature="image",
    labels=["rock", "paper", "scissors"],
)

# Define source for prediction image dataset
predict_source = DirectorySource(
    foldername="rps-predict",
    feature="image",
)