def main(): args = get_argument() assert args.relu or args.relu == args.equalize, 'must replace relu6 to relu while equalization' assert args.equalize or args.absorption == args.equalize, 'must use absorption with equalize' data = torch.ones((4, 3, 224, 224)) #.cuda() model = mobilenet_v2( 'modeling/classification/mobilenetv2_1.0-f2a8633.pth.tar') model.eval() transformer = TorchTransformer() module_dict = {} if args.quantize: if args.trainable: module_dict[1] = [(nn.Conv2d, QuantConv2d), (nn.Linear, QuantLinear)] else: module_dict[1] = [(nn.Conv2d, QuantNConv2d), (nn.Linear, QuantNLinear)] if args.relu: module_dict[0] = [(torch.nn.ReLU6, torch.nn.ReLU)] # transformer.summary(model, data) # transformer.visualize(model, data, 'graph_cls', graph_size=120) model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=args.quantize) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() output_shape = transformer.log.getOutShapes() if args.quantize: if args.trainable: targ_layer = [QuantConv2d, QuantLinear] else: targ_layer = [QuantNConv2d, QuantNLinear] else: targ_layer = [nn.Conv2d, nn.Linear] model = merge_batchnorm(model, graph, bottoms, targ_layer) #create relations if args.equalize: res = create_relation(graph, bottoms, targ_layer) cross_layer_equalization(graph, res, targ_layer, visualize_state=False, converge_thres=2e-7) if args.absorption: bias_absorption(graph, res, bottoms, 3) if args.clip_weight: clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer) if args.correction: bias_correction(graph, bottoms, targ_layer) if args.quantize: if not args.trainable: graph = quantize_targ_layer(graph, targ_layer) set_quant_minmax(graph, bottoms, output_shape) model = model.cuda() model.eval() if args.quantize: replace_op() acc = inference_all(model) print("Acc: {}".format(acc)) if args.quantize: restore_op()
cross_layer_equalization(graph, res, targ_layer, visualize_state=False, converge_thres=2e-7, s_range=(1 / args.equal_range, args.equal_range)) # if args.distill: # set_scale(res, graph, bottoms, targ_layer) if args.absorption: bias_absorption(graph, res, bottoms, 3) if args.clip_weight: clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer) if args.correction: bias_correction(graph, bottoms, targ_layer) if args.quantize: if not args.trainable and not args.distill_range: graph = quantize_targ_layer(graph, args.bits_weight, args.bits_bias, targ_layer) if args.distill_range: set_update_stat(net, [QuantMeasure], True) net = update_quant_range(net.cuda(), data_distill, graph, bottoms,
def main(): args = get_argument() assert args.relu or args.relu == args.equalize, 'must replace relu6 to relu while equalization' assert args.equalize or args.absorption == args.equalize, 'must use absorption with equalize' data = torch.ones((4, 3, 224, 224)) #.cuda() if args.resnet: import torchvision.models as models model = models.resnet18(pretrained=True) else: model = mobilenet_v2( 'modeling/classification/mobilenetv2_1.0-f2a8633.pth.tar') model.eval() if args.distill_range: import copy # define FP32 model model_original = copy.deepcopy(model) model_original.eval() transformer = TorchTransformer() transformer._build_graph(model_original, data, [QuantMeasure]) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() if not args.true_data: data_distill = getDistilData(model_original, 'imagenet', args.dis_batch_size, bn_merged=False,\ num_batch=args.dis_num_batch, gpu=True, value_range=[-2.11790393, 2.64], size=[224, 224], early_break_factor=1.2 if args.resnet else 0.5) else: imagenet_dataset = datasets.ImageFolder( '/home/jakc4103/windows/Toshiba/workspace/dataset/ILSVRC/Data/CLS-LOC/train', transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])) data_distill = [] dataloader = DataLoader(imagenet_dataset, batch_size=args.dis_batch_size, shuffle=True, num_workers=4, pin_memory=True) for idx, sample in enumerate(dataloader): if idx >= args.dis_num_batch: break image = sample[0] data_distill.append(image) del dataloader, imagenet_dataset transformer = TorchTransformer() module_dict = {} if args.quantize: if args.distill_range: module_dict[1] = [(nn.Conv2d, QConv2d), (nn.Linear, QLinear)] elif args.trainable: module_dict[1] = [(nn.Conv2d, QuantConv2d), (nn.Linear, QuantLinear)] else: module_dict[1] = [(nn.Conv2d, QuantNConv2d), (nn.Linear, QuantNLinear)] if args.relu: module_dict[0] = [(torch.nn.ReLU6, torch.nn.ReLU)] # transformer.summary(model, data) # transformer.visualize(model, data, 'graph_cls', graph_size=120) model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=args.quantize) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() if args.quantize: if args.distill_range: targ_layer = [QConv2d, QLinear] elif args.trainable: targ_layer = [QuantConv2d, QuantLinear] else: targ_layer = [QuantNConv2d, QuantNLinear] else: targ_layer = [nn.Conv2d, nn.Linear] if args.quantize: set_layer_bits(graph, args.bits_weight, args.bits_activation, args.bits_bias, targ_layer) model = merge_batchnorm(model, graph, bottoms, targ_layer) #create relations if args.equalize or args.distill_range: res = create_relation(graph, bottoms, targ_layer, delete_single=False) if args.equalize: cross_layer_equalization(graph, res, targ_layer, visualize_state=False, converge_thres=2e-7) # if args.distill: # set_scale(res, graph, bottoms, targ_layer) if args.absorption: bias_absorption(graph, res, bottoms, 3) if args.clip_weight: clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer) if args.correction: # if args.distill: # model_original = copy.deepcopy(model.cpu()) # model_original.eval() # transformer = TorchTransformer() # transformer.register(targ_layer[0], nn.Conv2d) # transformer.register(targ_layer[1], nn.Linear) # model_original = transformer.trans_layers(model_original, update=True) # bias_correction_distill(model, model_original, data_distill, targ_layer, [nn.Conv2d, nn.Linear]) # else: bias_correction(graph, bottoms, targ_layer, bits_weight=args.bits_weight) if args.quantize: if not args.trainable and not args.distill_range: graph = quantize_targ_layer(graph, args.bits_weight, args.bits_bias, targ_layer) if args.distill_range: set_update_stat(model, [QuantMeasure], True) model = update_quant_range(model.cuda(), data_distill, graph, bottoms) set_update_stat(model, [QuantMeasure], False) else: set_quant_minmax(graph, bottoms) torch.cuda.empty_cache() # if args.distill: # model = update_scale(model, model_original, data_distill, graph, bottoms, res, targ_layer, num_epoch=1000) # set_quant_minmax(graph, bottoms) model = model.cuda() model.eval() if args.quantize: replace_op() acc = inference_all(model) print("Acc: {}".format(acc)) if args.quantize: restore_op() if args.log: with open("cls_result.txt", 'a+') as ww: ww.write( "resnet: {}, quant: {}, relu: {}, equalize: {}, absorption: {}, correction: {}, clip: {}, distill_range: {}\n" .format(args.resnet, args.quantize, args.relu, args.equalize, args.absorption, args.correction, args.clip_weight, args.distill_range)) ww.write("Acc: {}\n\n".format(acc))
def main(): args = get_argument() assert args.relu or args.relu == args.equalize, 'must replace relu6 to relu while equalization' assert args.equalize or args.absorption == args.equalize, 'must use absorption with equalize' data = torch.ones((4, 3, 513, 513))#.cuda() model = DeepLab(sync_bn=False) state_dict = torch.load('modeling/segmentation/deeplab-mobilenet.pth.tar')['state_dict'] model.load_state_dict(state_dict) model.eval() if args.distill_range: import copy # define FP32 model model_original = copy.deepcopy(model) model_original.eval() transformer = TorchTransformer() transformer._build_graph(model_original, data, [QuantMeasure]) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() data_distill = getDistilData(model_original, 'imagenet', 32, bn_merged=False,\ num_batch=8, gpu=True, value_range=[-2.11790393, 2.64], size=[513, 513], early_break_factor=0.2) transformer = TorchTransformer() module_dict = {} if args.quantize: if args.distill_range: module_dict[1] = [(nn.Conv2d, QConv2d)] elif args.trainable: module_dict[1] = [(nn.Conv2d, QuantConv2d)] else: module_dict[1] = [(nn.Conv2d, QuantNConv2d)] if args.relu: module_dict[0] = [(torch.nn.ReLU6, torch.nn.ReLU)] # transformer.summary(model, data) # transformer.visualize(model, data, 'graph_deeplab', graph_size=120) model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=args.quantize) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() if args.quantize: if args.distill_range: targ_layer = [QConv2d] elif args.trainable: targ_layer = [QuantConv2d] else: targ_layer = [QuantNConv2d] else: targ_layer = [nn.Conv2d] if args.quantize: set_layer_bits(graph, args.bits_weight, args.bits_activation, args.bits_bias, targ_layer) model = merge_batchnorm(model, graph, bottoms, targ_layer) #create relations if args.equalize or args.distill_range: res = create_relation(graph, bottoms, targ_layer) if args.equalize: cross_layer_equalization(graph, res, targ_layer, visualize_state=False) # if args.distill: # set_scale(res, graph, bottoms, targ_layer) if args.absorption: bias_absorption(graph, res, bottoms, 3) if args.clip_weight: clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer) if args.correction: bias_correction(graph, bottoms, targ_layer) if args.quantize: if not args.trainable and not args.distill_range: graph = quantize_targ_layer(graph, args.bits_weight, args.bits_bias, targ_layer) if args.distill_range: set_update_stat(model, [QuantMeasure], True) model = update_quant_range(model.cuda(), data_distill, graph, bottoms) set_update_stat(model, [QuantMeasure], False) else: set_quant_minmax(graph, bottoms) torch.cuda.empty_cache() model = model.cuda() model.eval() if args.quantize: replace_op() inference_all(model, args.dataset, args if args.log else None) if args.quantize: restore_op()
def main(): args = get_argument() # An instance of your model if args.resnet: import torchvision.models as models model = models.resnet18(pretrained=True) model = ProbModel(model) else: model = mobilenet_v2( 'modeling/classification/mobilenetv2_1.0-f2a8633.pth.tar') model = ProbModel(model) model.eval() if args.quantize: data = torch.ones((4, 3, 224, 224)) #.cuda() if args.distill_range: import copy # define FP32 model model_original = copy.deepcopy(model) model_original.eval() transformer = TorchTransformer() transformer._build_graph(model_original, data, [QuantMeasure]) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() data_distill = getDistilData(model_original, 'imagenet', args.dis_batch_size, bn_merged=False,\ num_batch=args.dis_num_batch, gpu=True, value_range=[-2.11790393, 2.64], size=[224, 224], early_break_factor=1.2 if args.resnet else 0.5) transformer = TorchTransformer() module_dict = {} if args.distill_range: module_dict[1] = [(torch.nn.Conv2d, QConv2d), (torch.nn.Linear, QLinear)] else: module_dict[1] = [(torch.nn.Conv2d, QuantNConv2d), (torch.nn.Linear, QuantNLinear)] if args.relu or args.equalize: module_dict[0] = [(torch.nn.ReLU6, torch.nn.ReLU)] # transformer.summary(model, data) # transformer.visualize(model, data, 'graph_cls', graph_size=120) model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=True) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() if args.distill_range: targ_layer = [QConv2d, QLinear] else: targ_layer = [QuantNConv2d, QuantNLinear] set_layer_bits(graph, args.bits_weight, args.bits_activation, args.bits_bias, targ_layer) model = merge_batchnorm(model, graph, bottoms, targ_layer) #create relations if args.equalize or args.distill_range: res = create_relation(graph, bottoms, targ_layer, delete_single=False) if args.equalize: cross_layer_equalization(graph, res, targ_layer, visualize_state=False, converge_thres=2e-7, signed=True) if args.clip_weight: clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer) if args.correction: bias_correction(graph, bottoms, targ_layer, bits_weight=args.bits_weight, signed=True) if args.distill_range: set_update_stat(model, [QuantMeasure], True) model = update_quant_range(model.cuda(), data_distill, graph, bottoms) set_update_stat(model, [QuantMeasure], False) else: set_quant_minmax(graph, bottoms) torch.cuda.empty_cache() # restore custom conv layer to torch.nn.conv2d module_dict = {} if args.distill_range: module_dict[1] = [(QConv2d, torch.nn.Conv2d), (QLinear, torch.nn.Linear)] else: module_dict[1] = [(QuantNConv2d, torch.nn.Conv2d), (QuantNLinear, torch.nn.Linear)] model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=False) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() # An example input you would normally provide to your model's forward() method x = torch.rand(1, 3, 224, 224) # Export the onnx model torch_out = torch.onnx._export(model, x, "model.onnx", export_params=True) # Simplify model using onnx-simplifier os.system("python3 -m onnxsim model.onnx model-sim.onnx") os.system("rm model.onnx") cur_path = os.path.abspath(os.getcwd()) os.system("mv model-sim.onnx {}".format( os.path.join(args.ncnn_build, 'tools/onnx', 'model-sim.onnx'))) os.chdir(os.path.join(args.ncnn_build, 'tools/onnx')) # Convert onnx to ncnn os.system("./onnx2ncnn model-sim.onnx model.param model.bin") # Add input image size to .param lines = [line.strip() for line in open("model.param", "r")] with open("model.param", 'w') as ww: for idx, line in enumerate(lines): if idx == 2 and 'input' in line.lower(): line += ' 0=224 1=224 2=3' ww.write(line + '\n') if not os.path.exists(os.path.join(cur_path, 'modeling/ncnn')): os.makedirs(os.path.join(cur_path, 'modeling/ncnn')) os.system("rm model-sim.onnx") if args.quantize: os.system("mv model.param {}".format( os.path.join(args.ncnn_build, 'tools/quantize', 'model.param'))) os.system("mv model.bin {}".format( os.path.join(args.ncnn_build, 'tools/quantize', 'model.bin'))) os.chdir(os.path.join(args.ncnn_build, 'tools/quantize')) # Estimate activation range using https://github.com/Tencent/ncnn/tree/master/tools/quantize os.system("./ncnn2table --param=model.param --bin=model.bin\ --images={} --output=model_int8_channel.table\ --mean={},{},{} --norm={},{},{} --size=224,224 --thread=2". format(args.image_path, 0.485 * 255, 0.456 * 255, 0.406 * 255, 1 / (0.229 * 255), 1 / (0.224 * 255), 1 / (0.225 * 255))) # modify activation min/max range and weight min/max range to values calculated in DFQ table_old = [ line.strip() for line in open("model_int8_channel.table", 'r') ] table_new = [] count = 0 for ii in range(2): for idx in graph: if type(graph[idx]) in [torch.nn.Conv2d, torch.nn.Linear]: if ii == 0: #min/max for layer weight mi = float(torch.min(graph[idx].weight)) ma = float(torch.max(graph[idx].weight)) else: mi = float(torch.min(graph[idx].quant.running_min)) ma = float(torch.max(graph[idx].quant.running_max)) scale = 128. / (max(abs(ma), abs(mi))) if ii == 0: #min/max for activation table_new.append( ' '.join(table_old[count].split(' ')[0:1] + [str(scale)] * graph[idx].weight.shape[0])) else: table_new.append( ' '.join(table_old[count].split(' ')[0:1] + [str(scale)])) count += 1 with open("model_int8_tensor.table", 'w') as ww: for line in table_new: ww.write(line + '\n') # Convert to Int8 model os.system( "./ncnn2int8 model.param model.bin model_int8.param model_int8.bin model_int8_tensor.table" ) lines = [line.strip() for line in open("model_int8.param", "r")] os.system("cp model_int8.param {}".format( os.path.join(cur_path, args.param))) os.system("cp model_int8.bin {}".format( os.path.join(cur_path, args.bin))) os.system("cp model_int8_tensor.table {}".format( os.path.join(cur_path, args.table))) else: os.system("mv model.param {}".format(os.path.join( cur_path, args.param))) os.system("mv model.bin {}".format(os.path.join(cur_path, args.bin))) os.chdir(cur_path) line = ' '.join([l.strip() for l in open(args.param, 'r')][-1].split()).split(' ')[1] print("=" * 100) print("Target layer name '{}'".format(line)) print("=" * 100)
def main(): args = get_argument() assert args.relu or args.relu == args.equalize, 'must replace relu6 to relu while equalization' assert args.equalize or args.absorption == args.equalize, 'must use absorption with equalize' data = torch.ones((4, 3, 513, 513)) #.cuda() model = DeepLab(sync_bn=False) state_dict = torch.load( 'modeling/segmentation/deeplab-mobilenet.pth.tar')['state_dict'] model.load_state_dict(state_dict) model.eval() transformer = TorchTransformer() module_dict = {} if args.quantize: if args.trainable: module_dict[1] = [(nn.Conv2d, QuantConv2d)] else: module_dict[1] = [(nn.Conv2d, QuantNConv2d)] if args.relu: module_dict[0] = [(torch.nn.ReLU6, torch.nn.ReLU)] # transformer.summary(model, data) # transformer.visualize(model, data, 'graph_deeplab', graph_size=120) model, transformer = switch_layers(model, transformer, data, module_dict, ignore_layer=[QuantMeasure], quant_op=args.quantize) graph = transformer.log.getGraph() bottoms = transformer.log.getBottoms() output_shape = transformer.log.getOutShapes() if args.quantize: if args.trainable: targ_layer = [QuantConv2d] else: targ_layer = [QuantNConv2d] else: targ_layer = [nn.Conv2d] model = merge_batchnorm(model, graph, bottoms, targ_layer) #create relations if args.equalize: res = create_relation(graph, bottoms, targ_layer) cross_layer_equalization(graph, res, targ_layer, visualize_state=False) if args.absorption: bias_absorption(graph, res, bottoms, 3) if args.clip_weight: clip_weight(graph, range_clip=[-15, 15], targ_type=targ_layer) if args.correction: bias_correction(graph, bottoms, targ_layer) if args.quantize: if not args.trainable: graph = quantize_targ_layer(graph, targ_layer) set_quant_minmax(graph, bottoms, output_shape) model = model.cuda() model.eval() if args.quantize: replace_op() inference_all(model, args.dataset) if args.quantize: restore_op()