コード例 #1
0
ファイル: randomwalk_ref.py プロジェクト: AAAEEEE/P2R-GCN
def _split_traces(traces):
    """Splits the flattened RandomWalkTraces structure into list of list
    of tensors.

    Parameters
    ----------
    traces : PackedFunc object of RandomWalkTraces structure

    Returns
    -------
    traces : list[list[Tensor]]
        traces[i][j] is the j-th trace generated for i-th seed.
    """
    trace_counts = F.zerocopy_to_numpy(
        F.zerocopy_from_dlpack(traces(0).to_dlpack())).tolist()
    trace_lengths = F.zerocopy_from_dlpack(traces(1).to_dlpack())
    trace_vertices = F.zerocopy_from_dlpack(traces(2).to_dlpack())

    trace_vertices = F.split(trace_vertices,
                             F.zerocopy_to_numpy(trace_lengths).tolist(), 0)

    traces = []
    s = 0
    for c in trace_counts:
        traces.append(trace_vertices[s:s + c])
        s += c

    return traces
コード例 #2
0
ファイル: randomwalk_ref.py プロジェクト: AAAEEEE/P2R-GCN
def random_walk(g, seeds, num_traces, num_hops):
    """Batch-generate random walk traces on given graph with the same length.

    Parameters
    ----------
    g : DGLGraph
        The graph.
    seeds : Tensor
        The node ID tensor from which the random walk traces starts.
    num_traces : int
        Number of traces to generate for each seed.
    num_hops : int
        Number of hops for each trace.

    Returns
    -------
    traces : Tensor
        A 3-dimensional node ID tensor with shape

            (num_seeds, num_traces, num_hops + 1)

        traces[i, j, 0] are always starting nodes (i.e. seed[i]).
    """
    if len(seeds) == 0:
        return utils.toindex([]).tousertensor()
    seeds = utils.toindex(seeds).todgltensor()
    traces = _CAPI_DGLRandomWalk(g._graph._handle, seeds, int(num_traces),
                                 int(num_hops))
    return F.zerocopy_from_dlpack(traces.to_dlpack())
コード例 #3
0
ファイル: dis_kvstore.py プロジェクト: hacors/Drug
    def connect(self):
        """Connect to all the KVServer nodes
        """
        for ID, addr in self._server_namebook.items():
            server_ip, server_port = addr.split(':')
            _add_receiver_addr(self._sender, server_ip, int(server_port), ID)
        _sender_connect(self._sender)

        self._addr = self._get_local_addr()
        client_ip, client_port = self._addr.split(':')

        # find local server nodes
        for ID, addr in self._server_namebook.items():
            server_ip, server_port = addr.split(':')
            if client_ip == server_ip or server_ip == '127.0.0.1':
                self._local_server_id.add(ID)

        # send addr to server nodes
        msg = KVStoreMsg(type=KVMsgType.IP_ID,
                         rank=0,
                         name=self._addr,
                         id=None,
                         data=None)

        for server_id in range(self._server_count):
            _send_kv_msg(self._sender, msg, server_id)

        _receiver_wait(self._receiver, client_ip, int(client_port),
                       self._server_count)

        # recv client id
        msg = _recv_kv_msg(self._receiver)
        assert msg.rank == 0
        self._client_id = int(msg.name)

        # recv name of shared tensor from server 0
        msg = _recv_kv_msg(self._receiver)
        assert msg.rank == 0
        data_str = msg.name.split('|')
        # open shared tensor on local machine
        for data in data_str:
            if data != '' and self._close_shared_mem == False:
                tensor_name, shape, dtype = self._deserialize_shared_tensor(
                    data)
                for server_id in self._local_server_id:
                    shared_data = empty_shared_mem(
                        tensor_name + str(server_id), False, shape, dtype)
                    dlpack = shared_data.to_dlpack()
                    self._data_store[tensor_name] = F.zerocopy_from_dlpack(
                        dlpack)
                    self._has_data.add(tensor_name)
コード例 #4
0
    def init_data(self, name, data_tensor):
        """Initialize data on KVServer with data name.

        Parameters
        ----------
        name : str
            data name
        data_tensor : tensor (mx.ndarray or torch.tensor)
            data tensor
        """
        assert len(name) > 0, 'name cannot be empty.'
        assert len(data_tensor) > 0, 'data_tensor cannot be empty.'

        shared_data = empty_shared_mem(name+'-data-'+str(self._server_id), True, data_tensor.shape, 'float32')
        dlpack = shared_data.to_dlpack()
        self._data_store[name+'-data-'] = F.zerocopy_from_dlpack(dlpack)
        self._data_store[name+'-data-'][:] = data_tensor[:]
        self._has_data.add(name+'-data-')
コード例 #5
0
    def set_global2local(self, name, global2local):
        """Set a data mapping of global ID to local ID.

        Parameters
        ----------
        name : str
            data name
        global2local : list or tensor (mx.ndarray or torch.tensor)
            A data mapping of global ID to local ID. KVStore will use global ID automatically 
            if this global2local is not been set.
        """
        assert len(name) > 0, 'name cannot be empty.'
        assert len(global2local) > 0, 'global2local cannot be empty.'

        if isinstance(global2local, list):
            global2local = F.tensor(global2local)

        shared_data = empty_shared_mem(name+'-g2l-'+str(self._server_id), True, global2local.shape, 'int64')
        dlpack = shared_data.to_dlpack()
        self._data_store[name+'-g2l-'] = F.zerocopy_from_dlpack(dlpack)
        self._data_store[name+'-g2l-'][:] = global2local[:]
        self._has_data.add(name+'-g2l-')