def test_basic(): num_layers = 2 g = generate_rand_graph(100, connect_more=True) nf = create_full_nodeflow(g, num_layers) assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1) assert nf.number_of_edges() == g.number_of_edges() * num_layers assert nf.num_layers == num_layers + 1 assert nf.layer_size(0) == g.number_of_nodes() assert nf.layer_size(1) == g.number_of_nodes() check_basic(g, nf) parent_nids = F.copy_to(F.arange(0, g.number_of_nodes()), F.cpu()) nids = nf.map_from_parent_nid(0, parent_nids, remap_local=True) assert_array_equal(F.asnumpy(nids), F.asnumpy(parent_nids)) # should also work for negative layer ids for l in range(-1, -num_layers, -1): nids1 = nf.map_from_parent_nid(l, parent_nids, remap_local=True) nids2 = nf.map_from_parent_nid(l + num_layers, parent_nids, remap_local=True) assert_array_equal(F.asnumpy(nids1), F.asnumpy(nids2)) g = generate_rand_graph(100) nf = create_mini_batch(g, num_layers) assert nf.num_layers == num_layers + 1 check_basic(g, nf) g = generate_rand_graph(100, add_self_loop=True) nf = create_mini_batch(g, num_layers, add_self_loop=True) assert nf.num_layers == num_layers + 1 check_basic(g, nf)
def test_basic(): num_layers = 2 g = generate_rand_graph(100, connect_more=True) nf = create_full_nodeflow(g, num_layers) assert nf.number_of_nodes() == g.number_of_nodes() * (num_layers + 1) assert nf.number_of_edges() == g.number_of_edges() * num_layers assert nf.num_layers == num_layers + 1 assert nf.layer_size(0) == g.number_of_nodes() assert nf.layer_size(1) == g.number_of_nodes() check_basic(g, nf) parent_nids = F.arange(0, g.number_of_nodes()) nids = nf.map_from_parent_nid(0, parent_nids) assert F.array_equal(nids, parent_nids) g = generate_rand_graph(100) nf = create_mini_batch(g, num_layers) assert nf.num_layers == num_layers + 1 check_basic(g, nf)