コード例 #1
0
ファイル: test_nn.py プロジェクト: samzhaoziran/dgl
def test_tagconv():
    g = dgl.DGLGraph(nx.path_graph(3))
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = th.pow(g.in_degrees().float(), -0.5)

    conv = nn.TAGConv(5, 2, bias=True)
    conv = conv.to(ctx)
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1, ) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight,
                                  conv.lin.bias))

    conv = nn.TAGConv(5, 2)
    conv = conv.to(ctx)

    # test#2: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert h1.shape[-1] == 2

    # test reset_parameters
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)
コード例 #2
0
def test_tagconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    conv = nn.TAGConv(5, 5, bias=True)
    conv = conv.to(ctx)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    conv = conv.to(ctx)
    h = conv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5
コード例 #3
0
    def __init__(self, in_dim, hidden_dim, n_classes, hidden_layers, ctype,
                 hops, readout, activation_func, dropout, grid, device):
        super(Classifier, self).__init__()
        self.device = device
        self.readout = readout
        self.layers = nn.ModuleList()
        self.batch_norms = nn.ModuleList()
        self.grid = grid

        # input layer
        if ctype == 'tagconv':
            self.layers.append(
                conv.TAGConv(in_dim,
                             hidden_dim,
                             hops,
                             activation=activation_func))
        else:
            self.layers.append(
                conv.SGConv(in_dim,
                            hidden_dim,
                            hops,
                            cached=False,
                            norm=activation_func))
        self.batch_norms.append(nn.BatchNorm1d(hidden_dim))

        # hidden layers
        for k in range(0, hidden_layers):
            if ctype == 'tagconv':
                self.layers.append(
                    conv.TAGConv(hidden_dim,
                                 hidden_dim,
                                 hops,
                                 activation=activation_func))
            else:
                self.layers.append(
                    conv.SGConv(hidden_dim,
                                hidden_dim,
                                hops,
                                cached=False,
                                norm=activation_func))
            self.batch_norms.append(nn.BatchNorm1d(hidden_dim))

        # dropout layer
        self.dropout = nn.Dropout(p=dropout)

        # last layer
        if self.readout == 'max':
            self.readout_fcn = conv.MaxPooling()
        elif self.readout == 'mean':
            self.readout_fcn = conv.AvgPooling()
        elif self.readout == 'sum':
            self.readout_fcn = conv.SumPooling()
        elif self.readout == 'gap':
            self.readout_fcn = conv.GlobalAttentionPooling(
                nn.Linear(hidden_dim, 1), nn.Linear(hidden_dim,
                                                    hidden_dim * 2))
        else:
            self.readout_fcn = SppPooling(hidden_dim, self.grid)

        if self.readout == 'spp':
            self.classify = nn.Sequential(
                nn.Dropout(),
                nn.Linear(hidden_dim * self.grid * self.grid, hidden_dim * 2),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(2 * hidden_dim, 2 * hidden_dim),
                nn.ReLU(inplace=True),
                nn.Linear(2 * hidden_dim, n_classes),
            )
        else:
            var = hidden_dim
            if self.readout == 'gap':
                var *= 2
            self.classify = nn.Linear(var, n_classes)
コード例 #4
0
    def __init__(self, in_dim, hidden_dim, embed_dim, hidden_layers, hops,
                 readout, activation_func, dropout, local, norm, grid, K,
                 device):
        super(Classifier, self).__init__()
        self.device = device
        self.readout = readout
        self.layers = nn.ModuleList()
        self.batch_norms = nn.ModuleList()
        self.grid = grid
        self.K = K
        self.hidden_dim = hidden_dim
        self.local = local
        self.norm = norm

        self.layers.append(
            conv.TAGConv(in_dim, hidden_dim, hops, activation=activation_func))

        # hidden layers
        for k in range(0, hidden_layers):
            self.layers.append(
                conv.TAGConv(hidden_dim,
                             hidden_dim,
                             hops,
                             activation=activation_func))

        # dropout layer
        self.dropout = nn.Dropout(p=dropout)

        if self.local:
            return

        # readout layer
        if self.readout == 'max':
            self.readout_fcn = conv.MaxPooling()
        elif self.readout == 'mean':
            self.readout_fcn = conv.AvgPooling()
        elif self.readout == 'sum':
            self.readout_fcn = conv.SumPooling()
        elif self.readout == 'gap':
            self.readout_fcn = conv.GlobalAttentionPooling(
                nn.Linear(hidden_dim, 1), nn.Linear(hidden_dim,
                                                    hidden_dim * 2))
        elif self.readout == 'sort':
            self.readout_fcn = conv.SortPooling(self.K)
        elif self.readout == 'set':
            self.readout_fcn = conv.Set2Set(hidden_dim, 2, 1)
        elif self.readout == 'cov':
            self.readout_fcn = CovPooling(hidden_dim)
        else:
            self.readout_fcn = SppPooling(hidden_dim, self.grid)

        if self.readout == 'spp':
            self.embed = nn.Sequential(
                nn.Dropout(),
                nn.Linear(hidden_dim * self.grid * self.grid, hidden_dim * 2),
                nn.ReLU(inplace=True), nn.Dropout(),
                nn.Linear(2 * hidden_dim, 2 * hidden_dim),
                nn.ReLU(inplace=True), nn.Linear(2 * hidden_dim, embed_dim))
        elif self.readout == 'sort':
            self.embed = nn.Sequential(
                #nn.Dropout(),
                nn.Linear(hidden_dim * self.K, embed_dim))
        elif self.readout == 'cov':
            self.embed = nn.Sequential(
                nn.Dropout(),
                nn.Linear(int(((hidden_dim + 1) * hidden_dim) / 2), embed_dim))
        else:
            var = hidden_dim
            if self.readout == 'gap' or self.readout == 'set':
                var *= 2
            self.embed = nn.Linear(var, embed_dim)
コード例 #5
0
    def __init__(self, in_dim, hidden_dim, n_classes, hidden_layers, ctype,
                 hops, readout, activation_func, dropout, grid, K, norm,
                 device):
        super(Classifier, self).__init__()
        self.device = device
        self.readout = readout
        self.layers = nn.ModuleList()
        self.n_layers = nn.ModuleList()
        self.grid = grid
        self.K = K
        self.hidden_dim = hidden_dim
        self.norm = norm

        self.mish = Mish()

        # input layer
        if ctype == 'tagconv':
            self.layers.append(
                conv.TAGConv(in_dim,
                             hidden_dim,
                             hops,
                             activation=activation_func))
        else:
            self.layers.append(
                conv.SGConv(in_dim,
                            hidden_dim,
                            hops,
                            cached=False,
                            norm=activation_func))

        if self.norm == 'batch':
            self.n_layers.append(nn.BatchNorm1d(hidden_dim))
        elif self.norm == 'layer':
            self.n_layers.append(
                nn.LayerNorm(hidden_dim, elementwise_affine=False))
        elif self.norm == 'group':
            self.n_layers.append(nn.GroupNorm(16, hidden_dim))
        elif self.norm == 'instance':
            self.n_layers.append(nn.InstanceNorm1d(hidden_dim))
        else:
            self.n_layers.append(GraphNorm(hidden_dim, affine=False))

        # hidden layers
        for k in range(0, hidden_layers):
            if ctype == 'tagconv':
                self.layers.append(
                    conv.TAGConv(hidden_dim,
                                 hidden_dim,
                                 hops,
                                 activation=activation_func))
            else:
                self.layers.append(
                    conv.SGConv(hidden_dim,
                                hidden_dim,
                                hops,
                                cached=False,
                                norm=activation_func))

            if self.norm == 'batch':
                self.n_layers.append(nn.BatchNorm1d(hidden_dim))
            elif self.norm == 'layer':
                self.n_layers.append(
                    nn.LayerNorm(hidden_dim, elementwise_affine=False))
            elif self.norm == 'group':
                self.n_layers.append(nn.GroupNorm(16, hidden_dim))
            elif self.norm == 'instance':
                self.n_layers.append(nn.InstanceNorm1d(hidden_dim))
            else:
                self.n_layers.append(GraphNorm(hidden_dim, affine=False))

        # dropout layer
        self.dropout = nn.Dropout(p=dropout)

        # last layer
        if self.readout == 'max':
            self.readout_fcn = conv.MaxPooling()
        elif self.readout == 'mean':
            self.readout_fcn = conv.AvgPooling()
        elif self.readout == 'sum':
            self.readout_fcn = conv.SumPooling()
        elif self.readout == 'gap':
            self.readout_fcn = conv.GlobalAttentionPooling(
                nn.Linear(hidden_dim, 1), nn.Linear(hidden_dim,
                                                    hidden_dim * 2))
        elif self.readout == 'sort':
            self.readout_fcn = conv.SortPooling(self.K)
        elif self.readout == 'set':
            self.readout_fcn = conv.Set2Set(hidden_dim, 2, 1)
        elif self.readout == 'cov':
            self.readout_fcn = CovPooling(hidden_dim)
        else:
            self.readout_fcn = SppPooling(hidden_dim, self.grid)

        if self.readout == 'spp':
            self.classify = nn.Sequential(
                nn.Dropout(),
                nn.Linear(hidden_dim * self.grid * self.grid, hidden_dim * 2),
                nn.ReLU(inplace=True), nn.Dropout(),
                nn.Linear(2 * hidden_dim, 2 * hidden_dim),
                nn.ReLU(inplace=True), nn.Linear(2 * hidden_dim, n_classes))
        elif self.readout == 'sort':
            self.classify = nn.Sequential(
                #nn.Dropout(),
                nn.Linear(hidden_dim * self.K, n_classes))
        elif self.readout == 'cov':
            self.classify = nn.Sequential(
                nn.Dropout(),
                nn.Linear(int(((hidden_dim + 1) * hidden_dim) / 2), n_classes))
        else:
            var = hidden_dim
            if self.readout == 'gap' or self.readout == 'set':
                var *= 2
            self.classify = nn.Linear(var, n_classes)