コード例 #1
0
def test_spline():
    model = SplineCNN(16, 32, dim=3, num_layers=2, cat=True, lin=True,
                      dropout=0.5)
    assert model.__repr__() == ('SplineCNN(16, 32, dim=3, num_layers=2, '
                                'cat=True, lin=True, dropout=0.5)')

    x = torch.randn(100, 16)
    edge_index = torch.randint(100, (2, 400), dtype=torch.long)
    edge_attr = torch.rand((400, 3))
    for cat, lin in product([False, True], [False, True]):
        model = SplineCNN(16, 32, 3, 2, cat, lin, 0.5)
        out = model(x, edge_index, edge_attr)
        assert out.size() == (100, 16 + 2 * 32 if not lin and cat else 32)
        assert out.size() == (100, model.out_channels)
コード例 #2
0

transform = T.Compose([
    T.Constant(),
    T.KNNGraph(k=8),
    T.Cartesian(),
])
train_dataset = RandomGraphDataset(30, 60, 0, 20, transform=transform)
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=True,
                          follow_batch=['x_s', 'x_t'])

path = osp.join('..', 'data', 'PascalPF')
test_datasets = [PascalPF(path, cat, transform) for cat in PascalPF.categories]

device = 'cuda' if torch.cuda.is_available() else 'cpu'
psi_1 = SplineCNN(1, args.dim, 2, args.num_layers, cat=False, dropout=0.0)
psi_2 = SplineCNN(args.rnd_dim, args.rnd_dim, 2, args.num_layers, cat=True,
                  dropout=0.0)
model = DGMC_modified_v2(psi_1, psi_2, num_steps=args.num_steps).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)


def train():
    model.train()

    total_loss = total_examples = total_correct = 0
    for i, data in enumerate(train_loader):
        optimizer.zero_grad()
        data = data.to(device)
        S_L = model(data.x_s, data.edge_index_s, data.edge_attr_s,
                         data.x_s_batch, data.x_t, data.edge_index_t,
コード例 #3
0
                        pre_filter=pre_filter2
                        if category in ['car', 'motorbike'] else pre_filter1)
    pretrain_datasets += [ValidPairDataset(dataset, dataset, sample=True)]
pretrain_dataset = torch.utils.data.ConcatDataset(pretrain_datasets)
pretrain_loader = DataLoader(pretrain_dataset,
                             args.batch_size,
                             shuffle=True,
                             follow_batch=['x_s', 'x_t'])

path = osp.join('..', 'data', 'WILLOW')
datasets = [WILLOW(path, cat, transform) for cat in WILLOW.categories]

device = 'cuda' if torch.cuda.is_available() else 'cpu'
psi_1 = SplineCNN(dataset.num_node_features,
                  args.dim,
                  dataset.num_edge_features,
                  args.num_layers,
                  cat=False,
                  dropout=0.5)
psi_2 = SplineCNN(args.rnd_dim,
                  args.rnd_dim,
                  dataset.num_edge_features,
                  args.num_layers,
                  cat=True,
                  dropout=0.0)
model = DGMC_modified(psi_1, psi_2, num_steps=args.num_steps).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)


def generate_voc_y(y_col):
    y_row = torch.arange(y_col.size(0), device=device)
    return torch.stack([y_row, y_col], dim=0)