for i in xrange(100): NODES = 7115 edges = random.randint(75000, 125000) radius = 2 weak_ties = [i * 5 for i in xrange(0, 4)] seed = 100 # ##Create a Watts-Strogatz 2D direct graph # In[4]: g = standardize(WS2D(NODES, edges, radius, weak_ties)) print '# Edges %d\tAverage Clustering = %f' % (countEdges(g) * 2, ac( und(g))) fi(g) # Fill incoming edges sys.stdout.flush() # ## Execute centrality measures # In[5]: print '# Page Rank execution...' pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3) print '#', iterations, ' iterations. Error:', err top_pr = [a for a, b in topk(pagerank, seed)] # In[6]: print '# Eigenvector Centrality...',
from mylesson5 import eigenvector_centrality as ec from dgraph import diameter from dgraph import readGraph from dgraph import Page_Rank as pr from dgraph import fill_incoming as fi import networkx as nx seed = 100 g = readGraph('wiki-Vote.txt') # G = nx.from_dict_of_lists(g) # print 'NetworkX Page Rank' # print [a for a,b in topk(nx.pagerank(G, alpha=1.0e-6, tol=1.0e-10), 10)] # print [a for a,b in topk(nx.eigenvector_centrality(G), 10)] # g = {0: [2, 3, 4], 1: [0, 2, 3], 2: [1], 3: [0, 4], 4: [0]} fi(g) print 'Incoming edges stored' # print 'Nodes: ', len(g.keys()) # print 'Diameter: ', diameter(g) print 'Page Rank execution...' # print 'Triangles: ', ctD(g) pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-8) # alpha = 0.00001 print iterations, ' iterations. Error:', err print 'Page Rank' print topk(pagerank, seed) # print 'Eigenvector Centrality' # cscores, diffsum = ec(g) # print [a for a, b in topk(cscores, 10)] # bet = betweenness(g) # print 'Betweennes centrality' # print [a for a, b in topk(bet, 10)]
# ## Set Parameters # In[3]: seed = 100 # ##Read the wiki-vote graph # In[4]: g = readGraph('wiki-Vote.txt') print '# Wiki-Vote.txt' print '# Edges = %d\tAverage Clustering = %f' % (countEdges(g) * 2, ac(und(g))) fi(g) # Fill incoming edges dictionary sys.stdout.flush() # ## Execute centrality measures # In[8]: print '# Page Rank execution...' pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3) print '#', iterations, ' iterations. Error:', err top_pr = [a for a, b in topk(pagerank, seed)] # In[9]: print '# Eigenvector Centrality...',
# ## Set Parameters # In[3]: # ##Read the wiki-vote graph # In[4]: g = readGraph('wiki-Vote.txt') nodes = len(g.keys()) print '# Cascade Expansion Wiki-Vote.txt' print '# Edges = %d\tAverage Clustering = %f'% (countEdges(g), ac(und(g))) fi(g) # Fill incoming edges dictionary sys.stdout.flush() # ## Execute centrality measures # In[8]: print '# Page Rank execution...' pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3) print '#',iterations, ' iterations. Error:', err top_pr = [a for a,b in topk(pagerank, nodes)] # In[9]:
# In[3]: print '# 100 Random Direct Graphs' for i in xrange(100): NODES = 7115 edges = random.randint(75000, 125000) p = 0.5 # probability seed = 100 # ##Create a Random Direct Graph # In[4]: g = rdbg(NODES, p, edges) print '# Edges %d\tAverage Clustering = %f' % (countEdges(g)*2,ac(und(g))) fi(g) # Fill incoming edges sys.stdout.flush() # ## Execute centrality measures # In[6]: print '# Page Rank execution...' pagerank, iterations, err = pr(g, alpha=1.0e-5, eps=1.0e-3) print '#', iterations, ' iterations. Error:', err top_pr = [a for a,b in topk(pagerank, seed)] # In[7]: