mms = [1e8, 1e9, 1e10, 1e11, 1e12] if doexp: mtpath = mtpath + '/Mexp/' if mexp is not None: mtpath = mtpath[:-1] + '%02d/'%(mexp*100) try: os.makedirs(mtpath) except: pass ########################################### for M0 in mms: print('For M0 = %0.2e'%M0) fig, ax = plt.subplots(3, 3, figsize = (14, 12)) fit0 = dg.plot_noise(datas, predicts, M0=M0, binfit=bins, c='k', axin=ax, func=func, mbin=mbinsm, retfit=True, lsf='--')[0] #fit0 = dg.plot_noise(datapR.value, predictR.value, M0=M0, binfit=bins, c='k', axin=ax, func=func, mbin=mbinsm, retfit=True, lsf='--')[0] fits = [] for i, sg in enumerate(sgs): #fitt = dg.plot_noise(datasgR.value, predictR.value, M0=M0, binfit=bins, c=colors[i], axin=ax, func=func, mbin=mbinsm, retfit=True)[0] fitt = dg.plot_noise(datasgs[i], predicts, M0=M0, binfit=bins, c=colors[i], axin=ax, func=func, mbin=mbinsm, retfit=True)[0] fits.append(fitt) fig.savefig(mtpath + 'noisehist_M%02d_3seed.png'%(10*np.log10(M0))) tosave = [] for i, res in enumerate(fit0): #print(res) tosave.append([msave[i], msave[i+1], res.x[1], res.x[2]]) fpath = mtpath + 'hist_M%02d_3seed.txt'%(10*np.log10(M0))
logl = logl + t halomass2 = 10**logl sort2 = np.argsort(halomass2)[::-1] halomass2 = halomass2[sort2] halopos2 = hpos[sort2] return halomass2, halopos2 smin, smax = 0.1, 0.2 for M0 in [1e8, 1e9, 1e10, 1e11, 1e12]: fig, ax = plt.subplots(3, 3, figsize=(14, 12)) fit0 = dg.plot_noise(datapR.value, predictR.value, M0=M0, binfit=bins, c='k', axin=ax, func=func, mbin=mbinsm, retfit=True, lsf='--')[0] fits = [] sgs = [0.2] for i, sg in enumerate(sgs): hmass, hpos = dg.scatter_catalog(hdictf['mass'], hdictf['position'], sigma=sg) datasg = pm.paint(hpos[:num], hmass[:num]) datasgR = ft.smooth(datasg, 3, 'fingauss') fitt = dg.plot_noise(datasgR.value,