コード例 #1
0
p_vals = [a + b for a, b in zip(xlo_p_vals, [3., 3., 3.])]
xlo_param.set_param_vals(p_vals)

# change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
# alpha and beta angles)
xluc_p_vals = xluc_param.get_param_vals()
cell_params = mycrystal.get_unit_cell().parameters()
cell_params = [
    a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
]
new_uc = unit_cell(cell_params)
newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
S.set_orientation(orientation=newB)
X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
xluc_param.set_param_vals(X)

#############################
# Generate some reflections #
#############################

# All indices in a 2.0 Angstrom sphere
resolution = 2.0
index_generator = IndexGenerator(
    mycrystal.get_unit_cell(),
    space_group(space_group_symbols(1).hall()).type(), resolution)
indices = index_generator.to_array()

sweep_range = myscan.get_oscillation_range(deg=False)
im_width = myscan.get_oscillation(deg=False)[1]
assert sweep_range == (0., pi)
コード例 #2
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import \
        DetectorParameterisationSinglePanel
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import \
        symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction import ScansRayPredictor, \
      ExperimentsPredictor
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation # implicit import

    # Imports for the target function
    from dials.algorithms.refinement.target import \
        LeastSquaresPositionalResidualWithRmsdCutoff # implicit import

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse("""
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
                        process_includes=True)

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1")

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2")

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(image_range=(1, 1800),
                          exposure_times=0.1,
                          oscillation=(0, 0.1),
                          epochs=range(1800),
                          deg=True)
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal1,
                   imageset=None))
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal2,
                   imageset=None))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    #xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    #pred_param = XYPhiPredictionParameterisation(experiments,
    #  [det_param], [s0_param], [xlo_param], [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2., 2., 2.])]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2., 2., 2.])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    #print "Reflections will be generated with the following geometry:"
    #print mybeam
    #print mydetector
    #print crystal1
    #print crystal2

    # All indices in a 2.0 Angstrom sphere for crystal1
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices1 = index_generator.to_array()

    # All indices in a 2.0 Angstrom sphere for crystal2
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices2 = index_generator.to_array()

    # Predict rays within the sweep range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1['id'] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices1, experiment_id=1)
    obs_refs2['id'] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1['xyzobs.mm.value'] = obs_refs1['xyzcal.mm']
    obs_refs2['xyzobs.mm.value'] = obs_refs2['xyzcal.mm']

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.)**2)
    obs_refs1['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.)**2)
    obs_refs2['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

    #print "Total number of reflections excited for crystal1", len(obs_refs1)
    #print "Total number of reflections excited for crystal2", len(obs_refs2)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    #print "Initial values of parameters are"
    #msg = "Parameters: " + "%.5f " * len(pred_param)
    #print msg % tuple(pred_param.get_param_vals())
    #print

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope
    params = phil_scope.fetch(source=parse('')).extract()

    # in case we want a plot
    params.refinement.refinery.journal.track_parameter_correlation = True

    # scan static first
    from dials.algorithms.refinement.refiner import RefinerFactory
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()
コード例 #3
0
def test_refinement():
  '''Test a refinement run'''

  dials_regression = libtbx.env.find_in_repositories(
    relative_path="dials_regression",
    test=os.path.isdir)

  # Get a beam and detector from a datablock. This one has a CS-PAD, but that
  # is irrelevant
  data_dir = os.path.join(dials_regression, "refinement_test_data",
                          "hierarchy_test")
  datablock_path = os.path.join(data_dir, "datablock.json")
  assert os.path.exists(datablock_path)

  # load models
  from dxtbx.datablock import DataBlockFactory
  datablock = DataBlockFactory.from_serialized_format(datablock_path, check_format=False)
  im_set = datablock[0].extract_imagesets()[0]
  from copy import deepcopy
  detector = deepcopy(im_set.get_detector())
  beam = im_set.get_beam()

  # Invent a crystal, goniometer and scan for this test
  from dxtbx.model.crystal import crystal_model
  crystal = crystal_model((40.,0.,0.) ,(0.,40.,0.), (0.,0.,40.),
                          space_group_symbol = "P1")
  orig_xl = deepcopy(crystal)

  from dxtbx.model.experiment import goniometer_factory
  goniometer = goniometer_factory.known_axis((1., 0., 0.))

  # Build a mock scan for a 180 degree sweep
  from dxtbx.model.scan import scan_factory
  sf = scan_factory()
  scan = sf.make_scan(image_range = (1,1800),
                      exposure_times = 0.1,
                      oscillation = (0, 0.1),
                      epochs = range(1800),
                      deg = True)
  sweep_range = scan.get_oscillation_range(deg=False)
  im_width = scan.get_oscillation(deg=False)[1]
  assert sweep_range == (0., pi)
  assert approx_equal(im_width, 0.1 * pi / 180.)

  from dxtbx.model.experiment.experiment_list import ExperimentList, Experiment

  # Build an experiment list
  experiments = ExperimentList()
  experiments.append(Experiment(
        beam=beam, detector=detector, goniometer=goniometer,
        scan=scan, crystal=crystal, imageset=None))

  # simulate some reflections
  refs, _ = generate_reflections(experiments)

  # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
  # alpha and beta angles)
  from dials.algorithms.refinement.parameterisation.crystal_parameters import \
    CrystalUnitCellParameterisation
  xluc_param = CrystalUnitCellParameterisation(crystal)
  xluc_p_vals = xluc_param.get_param_vals()
  cell_params = crystal.get_unit_cell().parameters()
  cell_params = [a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1,
                                                     -0.1, 0.0])]
  from cctbx.uctbx import unit_cell
  from rstbx.symmetry.constraints.parameter_reduction import \
      symmetrize_reduce_enlarge
  from scitbx import matrix
  new_uc = unit_cell(cell_params)
  newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
  S = symmetrize_reduce_enlarge(crystal.get_space_group())
  S.set_orientation(orientation=newB)
  X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
  xluc_param.set_param_vals(X)

  # reparameterise the crystal at the perturbed geometry
  xluc_param = CrystalUnitCellParameterisation(crystal)

  # Dummy parameterisations for other models
  beam_param = None
  xlo_param = None
  det_param = None

  # parameterisation of the prediction equation
  from dials.algorithms.refinement.parameterisation.parameter_report import \
      ParameterReporter
  pred_param = TwoThetaPredictionParameterisation(experiments,
    det_param, beam_param, xlo_param, [xluc_param])
  param_reporter = ParameterReporter(det_param, beam_param,
                                     xlo_param, [xluc_param])

  # reflection manager
  refman = TwoThetaReflectionManager(refs, experiments, nref_per_degree=20,
    verbosity=2)

  # reflection predictor
  ref_predictor = TwoThetaExperimentsPredictor(experiments)

  # target function
  target = TwoThetaTarget(experiments, ref_predictor, refman, pred_param)

  # minimisation engine
  from dials.algorithms.refinement.engine \
    import LevenbergMarquardtIterations as Refinery
  refinery = Refinery(target = target,
                      prediction_parameterisation = pred_param,
                      log = None,
                      verbosity = 0,
                      track_step = False,
                      track_gradient = False,
                      track_parameter_correlation = False,
                      max_iterations = 20)

  # Refiner
  from dials.algorithms.refinement.refiner import Refiner
  refiner = Refiner(reflections=refs,
                    experiments=experiments,
                    pred_param=pred_param,
                    param_reporter=param_reporter,
                    refman=refman,
                    target=target,
                    refinery=refinery,
                    verbosity=1)

  history = refiner.run()

  # compare crystal with original crystal
  refined_xl = refiner.get_experiments()[0].crystal

  #print refined_xl
  assert refined_xl.is_similar_to(orig_xl, uc_rel_length_tolerance=0.001,
    uc_abs_angle_tolerance=0.01)

  #print "Unit cell esds:"
  #print refined_xl.get_cell_parameter_sd()

  return
コード例 #4
0
def test():
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get modules to build models and minimiser using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry
    import dials.test.algorithms.refinement.setup_minimiser as setup_minimiser

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    #############################
    # Setup experimental models #
    #############################

    override = """geometry.parameters
  {
    beam.wavelength.random=False
    beam.wavelength.value=1.0
    beam.direction.inclination.random=False
    crystal.a.length.random=False
    crystal.a.length.value=12.0
    crystal.a.direction.method=exactly
    crystal.a.direction.exactly.direction=1.0 0.002 -0.004
    crystal.b.length.random=False
    crystal.b.length.value=14.0
    crystal.b.direction.method=exactly
    crystal.b.direction.exactly.direction=-0.002 1.0 0.002
    crystal.c.length.random=False
    crystal.c.length.value=13.0
    crystal.c.direction.method=exactly
    crystal.c.direction.exactly.direction=0.002 -0.004 1.0
    detector.directions.method=exactly
    detector.directions.exactly.dir1=0.99 0.002 -0.004
    detector.directions.exactly.norm=0.002 -0.001 0.99
    detector.centre.method=exactly
    detector.centre.exactly.value=1.0 -0.5 199.0
  }"""

    master_phil = parse(
        """
  include scope dials.test.algorithms.refinement.geometry_phil
  include scope dials.test.algorithms.refinement.minimiser_phil
  """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil,
                                    local_overrides=override,
                                    verbose=False)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )

    # Build an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Create the PredictionParameterisation
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 4 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 4.0, 4.0, 4.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 4 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 4.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=3 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [3.0, 3.0, 3.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # alpha and beta angles)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # The total number of observations should be 1128
    assert len(obs_refs) == 1128

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs,
                               experiments,
                               outlier_detector=None,
                               close_to_spindle_cutoff=0.1)

    ##############################
    # Set up the target function #
    ##############################

    # The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
    # 1/3 the image width in radians. For the simulated data, these are just made up
    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    ######################################
    # Set up the LSTBX refinement engine #
    ######################################

    overrides = """minimiser.parameters.engine=GaussNewton
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 1
    assert approx_equal(
        mytarget.rmsds(),
        (0.00508252354876, 0.00420954552156, 8.97303428289e-05))

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    ######################################################
    # Set up the LBFGS with curvatures refinement engine #
    ######################################################

    overrides = """minimiser.parameters.engine=LBFGScurvs
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 9
    assert approx_equal(mytarget.rmsds(),
                        (0.0558857700305, 0.0333446685335, 0.000347402754278))
コード例 #5
0
def test(args=[]):
    #############################
    # Setup experimental models #
    #############################
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    single_panel_detector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Make a 3x3 multi panel detector filling the same space as the existing
    # single panel detector. Each panel of the multi-panel detector has pixels with
    # 1/3 the length dimensions of the single panel.

    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build ExperimentLists
    experiments_single_panel = ExperimentList()
    experiments_multi_panel = ExperimentList()
    experiments_single_panel.append(
        Experiment(
            beam=mybeam,
            detector=single_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))
    experiments_multi_panel.append(
        Experiment(
            beam=mybeam,
            detector=multi_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(single_panel_detector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    multi_det_param = DetectorParameterisationMultiPanel(
        multi_panel_detector, mybeam)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    # xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments_single_panel,
                                                 [det_param], [s0_param],
                                                 [xlo_param], [xluc_param])

    pred_param2 = XYPhiPredictionParameterisation(
        experiments_multi_panel,
        [multi_det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detectors by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    multi_det_p_vals = multi_det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    multi_det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # for the reflection predictor, it doesn't matter which experiment list is
    # passed, as the detector is not used
    ref_predictor = ScansRayPredictor(experiments_single_panel, sweep_range)

    # get two sets of identical reflections
    obs_refs = ref_predictor(indices)
    obs_refs2 = ref_predictor(indices)
    for r1, r2 in zip(obs_refs, obs_refs2):
        assert r1["s1"] == r2["s1"]

    # get the panel intersections
    sel = ray_intersection(single_panel_detector, obs_refs)
    obs_refs = obs_refs.select(sel)
    sel = ray_intersection(multi_panel_detector, obs_refs2)
    obs_refs2 = obs_refs2.select(sel)
    assert len(obs_refs) == len(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = single_panel_detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)

    # set the variances and frame numbers
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Add in flags and ID columns by copying into standard reflection tables
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp
    tmp = flex.reflection_table.empty_standard(len(obs_refs2))
    tmp.update(obs_refs2)
    obs_refs2 = tmp

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments_single_panel)
    refman2 = ReflectionManager(obs_refs, experiments_multi_panel)

    ###############################
    # Set up the target functions #
    ###############################

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_single_panel,
        ScansExperimentsPredictor(experiments_single_panel),
        refman,
        pred_param,
        restraints_parameterisation=None,
    )
    mytarget2 = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_multi_panel,
        ScansExperimentsPredictor(experiments_multi_panel),
        refman2,
        pred_param2,
        restraints_parameterisation=None,
    )

    #################################
    # Set up the refinement engines #
    #################################

    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      cmdline_args=args).refiner
    refiner2 = setup_minimiser.Extract(master_phil,
                                       mytarget2,
                                       pred_param2,
                                       cmdline_args=args).refiner

    refiner.run()

    # reset parameters and run refinement with the multi panel detector
    s0_param.set_param_vals(s0_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    refiner2.run()

    # same number of steps
    assert refiner.get_num_steps() == refiner2.get_num_steps()

    # same rmsds
    for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
        assert approx_equal(rmsd, rmsd2)

    # same parameter values each step
    for params, params2 in zip(refiner.history["parameter_vector"],
                               refiner.history["parameter_vector"]):
        assert approx_equal(params, params2)
コード例 #6
0
class ModelState(object):
    """
    A class to keep track of the model state

    """
    def __init__(
        self,
        experiment,
        mosaicity_parameterisation,
        wavelength_parameterisation=None,
        fix_mosaic_spread=False,
        fix_wavelength_spread=True,
        fix_unit_cell=False,
        fix_orientation=False,
    ):
        """
        Initialise the model state

        """

        # Save the crystal model
        self.experiment = experiment
        self.crystal = experiment.crystal

        # The U and P parameterisation
        self._U_parameterisation = CrystalOrientationParameterisation(
            self.crystal)
        self._B_parameterisation = CrystalUnitCellParameterisation(
            self.crystal)

        # The M and L parameterisations
        self._M_parameterisation = mosaicity_parameterisation
        self._L_parameterisation = wavelength_parameterisation

        # Set the flags to fix parameters
        self._is_mosaic_spread_fixed = fix_mosaic_spread
        self._is_wavelength_spread_fixed = fix_wavelength_spread
        self._is_unit_cell_fixed = fix_unit_cell
        self._is_orientation_fixed = fix_orientation

        # Check wavelength parameterisation
        if not self.is_wavelength_spread_fixed:
            assert self._L_parameterisation is not None

    @property
    def is_orientation_fixed(self) -> bool:
        return self._is_orientation_fixed

    @property
    def is_unit_cell_fixed(self) -> bool:
        return self._is_unit_cell_fixed

    @property
    def is_mosaic_spread_fixed(self) -> bool:
        return self._is_mosaic_spread_fixed

    @property
    def is_mosaic_spread_angular(self) -> bool:
        return self._M_parameterisation.is_angular()

    @property
    def is_wavelength_spread_fixed(self) -> bool:
        return self._is_wavelength_spread_fixed

    @property
    def unit_cell(self):
        return self.crystal.get_unit_cell()

    @property
    def U_matrix(self) -> np.array:
        return np.array([self.crystal.get_U()], dtype=np.float64).reshape(3, 3)

    @property
    def B_matrix(self) -> np.array:
        return np.array([self.crystal.get_B()], dtype=np.float64).reshape(3, 3)

    @property
    def A_matrix(self) -> np.array:
        return np.array([self.crystal.get_A()], dtype=np.float64).reshape(3, 3)

    @property
    def mosaicity_covariance_matrix(self) -> np.array:
        return self._M_parameterisation.sigma()

    @property
    def wavelength_spread(self) -> flex.double:
        if self._L_parameterisation is not None:
            return self._L_parameterisation.sigma()
        return flex.double()

    @property
    def U_params(self) -> np.array:
        """Get the parameters of the orientation parameterisation"""
        return np.array(self._U_parameterisation.get_param_vals(),
                        dtype=np.float64)

    @U_params.setter
    def U_params(self, params) -> None:
        self._U_parameterisation.set_param_vals(tuple(
            float(i) for i in params))

    @property
    def B_params(self) -> np.array:
        """Get the parameters of the orientation parameterisation"""
        return np.array(self._B_parameterisation.get_param_vals(),
                        dtype=np.float64)

    @B_params.setter
    def B_params(self, params) -> None:
        self._B_parameterisation.set_param_vals(tuple(
            float(i) for i in params))

    @property
    def M_params(self) -> np.array:
        "Parameters of the mosaicity parameterisation"
        return self._M_parameterisation.parameters

    @M_params.setter
    def M_params(self, params) -> None:
        self._M_parameterisation.parameters = params

    @property
    def L_params(self) -> np.array:
        "Parameters of the Lambda (wavelength) parameterisation"
        if self._L_parameterisation is not None:
            return np.array(self._L_parameterisation.parameters,
                            dtype=np.float64)
        return np.array([])

    @L_params.setter
    def L_params(self, params: flex.double) -> None:
        if self._L_parameterisation is not None:
            self._L_parameterisation.parameters = params

    @property
    def dU_dp(self) -> np.array:
        """
        Get the first derivatives of U w.r.t its parameters

        """
        ds_dp = self._U_parameterisation.get_ds_dp()
        n = len(ds_dp)
        s = np.array([ds_dp[i] for i in range(n)],
                     dtype=np.float64).reshape(n, 3, 3)
        return s

    @property
    def dB_dp(self) -> np.array:
        """
        Get the first derivatives of B w.r.t its parameters

        """
        ds_dp = self._B_parameterisation.get_ds_dp()
        n = len(ds_dp)
        s = np.array([ds_dp[i] for i in range(n)],
                     dtype=np.float64).reshape(n, 3, 3)
        return s

    @property
    def dM_dp(self) -> np.array:
        """
        Get the first derivatives of M w.r.t its parameters

        """
        return self._M_parameterisation.first_derivatives()

    @property
    def dL_dp(self) -> flex.double:
        """
        Get the first derivatives of L w.r.t its parameters

        """
        if self._L_parameterisation is not None:
            return self._L_parameterisation.first_derivatives()
        return flex.double()

    @property
    def active_parameters(self) -> np.array:
        """
        The active parameters in order: U, B, M, L, W
        """
        active_params = []
        if not self.is_orientation_fixed:
            active_params.append(self.U_params)
        if not self.is_unit_cell_fixed:
            active_params.append(self.B_params)
        if not self.is_mosaic_spread_fixed:
            active_params.append(self.M_params)
        if not self.is_wavelength_spread_fixed:
            active_params.append(self.L_params)
        active_params = np.concatenate(active_params)
        assert len(active_params) > 0
        return active_params

    @active_parameters.setter
    def active_parameters(self, params) -> None:
        """
        Set the active parameters in order: U, B, M, L, W
        """
        if not self.is_orientation_fixed:
            n_U_params = len(self.U_params)
            temp = params[:n_U_params]
            params = params[n_U_params:]
            self.U_params = temp
        if not self.is_unit_cell_fixed:
            n_B_params = len(self.B_params)
            temp = params[:n_B_params]
            params = params[n_B_params:]
            self.B_params = temp
        if not self.is_mosaic_spread_fixed:
            n_M_params = self.M_params.size
            temp = params[:n_M_params]
            params = params[n_M_params:]
            self.M_params = np.array(temp)
        if not self.is_wavelength_spread_fixed:
            n_L_params = self.L_params.size
            temp = params[:n_L_params]
            self.L_params = temp

    @property
    def parameter_labels(self) -> List[str]:
        """
        Get the parameter labels

        """
        labels = []
        if not self.is_orientation_fixed:
            labels += [f"Crystal_U_{i}" for i in range(self.U_params.size)]
        if not self.is_unit_cell_fixed:
            labels += [f"Crystal_B_{i}" for i in range(self.B_params.size)]
        if not self.is_mosaic_spread_fixed:
            labels += [f"Mosaicity_{i}" for i in range(self.M_params.size)]
        if not self.is_wavelength_spread_fixed:
            labels.append("Wavelength_Spread")
        assert len(labels) > 0
        return labels
コード例 #7
0
def test(args=[]):
    from math import pi

    from cctbx.sgtbx import space_group, space_group_symbols

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import Experiment, ExperimentList
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
    from scitbx import matrix
    from scitbx.array_family import flex

    # Get modules to build models and minimiser using PHIL
    import dials.tests.algorithms.refinement.setup_geometry as setup_geometry
    import dials.tests.algorithms.refinement.setup_minimiser as setup_minimiser
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel,
    )

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation,
    )
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansExperimentsPredictor,
        ScansRayPredictor,
    )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
      include scope dials.tests.algorithms.refinement.geometry_phil
      include scope dials.tests.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        )
    )

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    # xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(
        experiments, [det_param], [s0_param], [xlo_param], [xluc_param]
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    print("Reflections will be generated with the following geometry:")
    print(mybeam)
    print(mydetector)
    print(mycrystal)
    print("Target values of parameters are")
    msg = "Parameters: " + "%.5f " * len(pred_param)
    print(msg % tuple(pred_param.get_param_vals()))
    print()

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    print("Total number of reflections excited", len(obs_refs))

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    print("Total number of observations made", len(obs_refs))

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    print("Initial values of parameters are")
    msg = "Parameters: " + "%.5f " * len(pred_param)
    print(msg % tuple(pred_param.get_param_vals()))
    print()

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments)

    ##############################
    # Set up the target function #
    ##############################

    # The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
    # 1/3 the image width in radians. For the simulated data, these are just made up

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
    )

    ################################
    # Set up the refinement engine #
    ################################

    refiner = setup_minimiser.Extract(
        master_phil, mytarget, pred_param, cmdline_args=args
    ).refiner

    print("Prior to refinement the experimental model is:")
    print(mybeam)
    print(mydetector)
    print(mycrystal)

    refiner.run()

    print()
    print("Refinement has completed with the following geometry:")
    print(mybeam)
    print(mydetector)
    print(mycrystal)
コード例 #8
0
def test(init_test):

    single_panel_detector = init_test.experiments_single_panel.detectors()[0]
    multi_panel_detector = init_test.experiments_multi_panel.detectors()[0]
    beam = init_test.experiments_single_panel.beams()[0]
    gonio = init_test.experiments_single_panel.goniometers()[0]
    crystal = init_test.experiments_single_panel.crystals()[0]

    # Parameterise the models
    det_param = DetectorParameterisationSinglePanel(single_panel_detector)
    s0_param = BeamParameterisation(beam, gonio)
    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    multi_det_param = DetectorParameterisationMultiPanel(multi_panel_detector, beam)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Link model parameterisations together into a parameterisation of the
    # prediction equation, first for the single panel detector
    pred_param = XYPhiPredictionParameterisation(
        init_test.experiments_single_panel,
        [det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    # ... and now for the multi-panel detector
    pred_param2 = XYPhiPredictionParameterisation(
        init_test.experiments_multi_panel,
        [multi_det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detectors by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
    det_param.set_param_vals(p_vals)

    multi_det_p_vals = multi_det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
    multi_det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(
        init_test.observations_single_panel, init_test.experiments_single_panel
    )
    refman2 = ReflectionManager(
        init_test.observations_multi_panel, init_test.experiments_multi_panel
    )

    ###############################
    # Set up the target functions #
    ###############################

    target = LeastSquaresPositionalResidualWithRmsdCutoff(
        init_test.experiments_single_panel,
        ScansExperimentsPredictor(init_test.experiments_single_panel),
        refman,
        pred_param,
        restraints_parameterisation=None,
    )
    target2 = LeastSquaresPositionalResidualWithRmsdCutoff(
        init_test.experiments_multi_panel,
        ScansExperimentsPredictor(init_test.experiments_multi_panel),
        refman2,
        pred_param2,
        restraints_parameterisation=None,
    )

    #################################
    # Set up the refinement engines #
    #################################

    refiner = setup_minimiser.Extract(master_phil, target, pred_param).refiner
    refiner2 = setup_minimiser.Extract(master_phil, target2, pred_param2).refiner

    refiner.run()

    # reset parameters and run refinement with the multi panel detector
    s0_param.set_param_vals(s0_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    refiner2.run()

    # same number of steps
    assert refiner.get_num_steps() == refiner2.get_num_steps()

    # same rmsds
    for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
        assert approx_equal(rmsd, rmsd2)

    # same parameter values each step
    for params, params2 in zip(
        refiner.history["parameter_vector"], refiner.history["parameter_vector"]
    ):
        assert approx_equal(params, params2)
コード例 #9
0
def test():
    import random
    import textwrap

    from cctbx.uctbx import unit_cell
    from libtbx.test_utils import approx_equal

    def random_direction_close_to(vector):
        return vector.rotate_around_origin(
            matrix.col((random.random(), random.random(),
                        random.random())).normalize(),
            random.gauss(0, 1.0),
            deg=True,
        )

    # make a random P1 crystal and parameterise it
    a = random.uniform(10, 50) * random_direction_close_to(
        matrix.col((1, 0, 0)))
    b = random.uniform(10, 50) * random_direction_close_to(
        matrix.col((0, 1, 0)))
    c = random.uniform(10, 50) * random_direction_close_to(
        matrix.col((0, 0, 1)))
    xl = Crystal(a, b, c, space_group_symbol="P 1")

    xl_op = CrystalOrientationParameterisation(xl)
    xl_ucp = CrystalUnitCellParameterisation(xl)

    null_mat = matrix.sqr((0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))

    # compare analytical and finite difference derivatives
    an_ds_dp = xl_op.get_ds_dp()
    fd_ds_dp = get_fd_gradients(xl_op, [1.0e-6 * pi / 180] * 3)
    for e, f in zip(an_ds_dp, fd_ds_dp):
        assert approx_equal((e - f), null_mat, eps=1.0e-6)

    an_ds_dp = xl_ucp.get_ds_dp()
    fd_ds_dp = get_fd_gradients(xl_ucp, [1.0e-7] * xl_ucp.num_free())
    for e, f in zip(an_ds_dp, fd_ds_dp):
        assert approx_equal((e - f), null_mat, eps=1.0e-6)

    # random initial orientations with a random parameter shift at each
    attempts = 100
    for i in range(attempts):

        # make a random P1 crystal and parameterise it
        a = random.uniform(10, 50) * random_direction_close_to(
            matrix.col((1, 0, 0)))
        b = random.uniform(10, 50) * random_direction_close_to(
            matrix.col((0, 1, 0)))
        c = random.uniform(10, 50) * random_direction_close_to(
            matrix.col((0, 0, 1)))
        xl = Crystal(a, b, c, space_group_symbol="P 1")
        xl_op = CrystalOrientationParameterisation(xl)
        xl_uc = CrystalUnitCellParameterisation(xl)

        # apply a random parameter shift to the orientation
        p_vals = xl_op.get_param_vals()
        p_vals = random_param_shift(
            p_vals, [1000 * pi / 9, 1000 * pi / 9, 1000 * pi / 9])
        xl_op.set_param_vals(p_vals)

        # compare analytical and finite difference derivatives
        xl_op_an_ds_dp = xl_op.get_ds_dp()
        xl_op_fd_ds_dp = get_fd_gradients(xl_op, [1.0e-5 * pi / 180] * 3)

        # apply a random parameter shift to the unit cell. We have to
        # do this in a way that is respectful to metrical constraints,
        # so don't modify the parameters directly; modify the cell
        # constants and extract the new parameters
        cell_params = xl.get_unit_cell().parameters()
        cell_params = random_param_shift(cell_params, [1.0] * 6)
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = S.forward_independent_parameters()
        xl_uc.set_param_vals(X)

        xl_uc_an_ds_dp = xl_ucp.get_ds_dp()

        # now doing finite differences about each parameter in turn
        xl_uc_fd_ds_dp = get_fd_gradients(xl_ucp, [1.0e-7] * xl_ucp.num_free())

        for j in range(3):
            assert approx_equal((xl_op_fd_ds_dp[j] - xl_op_an_ds_dp[j]),
                                null_mat,
                                eps=1.0e-6), textwrap.dedent("""\
        Failure in try {i}
        failure for parameter number {j}
        of the orientation parameterisation
        with fd_ds_dp =
        {fd}
        and an_ds_dp =
        {an}
        so that difference fd_ds_dp - an_ds_dp =
        {diff}
        """).format(
                                    i=i,
                                    j=j,
                                    fd=xl_op_fd_ds_dp[j],
                                    an=xl_op_an_ds_dp[j],
                                    diff=xl_op_fd_ds_dp[j] - xl_op_an_ds_dp[j],
                                )

        for j in range(xl_ucp.num_free()):
            assert approx_equal((xl_uc_fd_ds_dp[j] - xl_uc_an_ds_dp[j]),
                                null_mat,
                                eps=1.0e-6), textwrap.dedent("""\
        Failure in try {i}
        failure for parameter number {j}
        of the unit cell parameterisation
        with fd_ds_dp =
        {fd}
        and an_ds_dp =
        {an}
        so that difference fd_ds_dp - an_ds_dp =
        {diff}
        """).format(
                                    i=i,
                                    j=j,
                                    fd=xl_uc_fd_ds_dp[j],
                                    an=xl_uc_an_ds_dp[j],
                                    diff=xl_uc_fd_ds_dp[j] - xl_uc_an_ds_dp[j],
                                )
コード例 #10
0
class Apple(object):
    def __init__(self, reflection_file, experiment_file):

        data = pickle.load(open(reflection_file, "rb"))

        self.data = data.select(data["intensity.sum.variance"] > 0)

        i = data["intensity.sum.value"]
        v = data["intensity.sum.variance"]
        s = flex.sqrt(v)
        self.i_s = i / s

        self.scale = 2

        from dxtbx.model.experiment_list import ExperimentListFactory

        expt = ExperimentListFactory.from_json_file(experiment_file)
        panel = expt.detectors()[0][0]
        crystal = expt.crystals()[0]
        self.s0 = matrix.col(expt.beams()[0].get_s0())
        wavelength = expt.beams()[0].get_wavelength()

        # make a list of observed q positions

        self.qobs = []
        for j in range(data.size()):
            x, y, z = data["xyzobs.px.value"][j]
            p = matrix.col(panel.get_pixel_lab_coord((x, y)))
            q = p.normalize() / wavelength - self.s0
            self.qobs.append(q)

        self.wavelength = wavelength
        self.panel = panel
        self.beam = expt.beams()[0]
        self.crystal = crystal

        # slurp data from $somewhere

        imageset = expt.imagesets()[0]
        self.raw_data = imageset.get_raw_data(0)[0]
        self.imageset = imageset

        return

    def load(self, filename):
        from dxtbx import load

        i = load(filename)
        self.raw_data = i.get_raw_data()
        return

    def refine(self, do_print=False):
        crystal = self.crystal
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation,
            CrystalOrientationParameterisation,
        )

        self.cucp = CrystalUnitCellParameterisation(crystal)
        self.cop = CrystalOrientationParameterisation(crystal)

        self.zero()

        # 0-point and deltas
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        initial = crystal.get_unit_cell()
        self.cells = []
        self.best_score = 1e99
        initial_score = self.target(values)
        doohicky = simple_simplex(values, offset, self, 2000)
        best = doohicky.get_solution()
        if do_print:
            print("Initial cell:", initial)
            print("Final cell:  ", crystal.get_unit_cell())
            print("Score change", initial_score,
                  self.target(best, do_print=False))
        self.best = best

    def plot_map(self, map, filename):
        import matplotlib

        matplotlib.use("Agg")
        from matplotlib import pyplot

        data = map.as_numpy_array()
        fig = pyplot.gcf()
        pyplot.imshow(data, cmap="gray_r")
        pyplot.colorbar()
        pyplot.savefig(filename, dpi=400)
        pyplot.clf()
        return

    def plot_log_map(self, map, filename):
        import matplotlib

        matplotlib.use("Agg")
        from matplotlib import pyplot

        negative = map.as_1d() <= 0
        map.as_1d().set_selected(negative, 1)
        logmap = flex.log10(map.as_double())

        data = logmap.as_numpy_array()
        fig = pyplot.gcf()
        pyplot.imshow(data, cmap="gray_r")
        pyplot.colorbar()
        pyplot.savefig(filename, dpi=400)
        pyplot.clf()
        return

    def render_distance(self):
        distance_map = flex.double(flex.grid(self.raw_data.focus()))
        origin = self.panel.get_origin()
        fast = self.panel.get_fast_axis()
        slow = self.panel.get_slow_axis()
        nfast, nslow = self.panel.get_image_size()

        UB = matrix.sqr(self.crystal.get_A())
        UBi = UB.inverse()

        from dials_scratch import q_map

        distance_map = q_map(self.panel, self.beam, UB, 1)
        return distance_map

    def target(self, vector, do_print=False):
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        if do_print:
            print("Cell: %.3f %.3f %.3f %.3f %.3f %.3f" %
                  tuple(self.crystal.get_unit_cell().parameters()))
            print("Phi(1,2,3): %.3f %.3f %.3f" % tuple(tst_orientation))

        UB = matrix.sqr(self.crystal.get_A())

        score = self.score(UB)

        if score < self.best_score:
            self.best_score = score
            self.cells.append(self.crystal.get_unit_cell().parameters())
        return score

    def score(self, UB):
        score = 0.0
        for j in range(self.data.size()):
            hkl = self.data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            score += (q - qo).length()**2
        return score

    def plotify(self):
        vector = self.best
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        self.maxq = 0
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            print((q - qo).length(), self.i_s[j], self.dq0[j])
            if (q - qo).length() > self.maxq:
                self.maxq = (q - qo).length()

        return

    def get_maxq(self):
        vector = self.best
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        self.maxq = 0
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            if (q - qo).length() > self.maxq:
                self.maxq = (q - qo).length()

        return self.maxq

    def zero(self):
        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        self.dq0 = []
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            qo = self.qobs[j]
            self.dq0.append((q - qo).length())

        return

    def get_signal_mask(self):
        if hasattr(self, "signal_mask"):
            return self.signal_mask
        distance_map = self.render_distance()
        maxq = self.get_maxq()
        self.signal_mask = distance_map.as_1d() < (self.scale * maxq)
        self.signal_mask.reshape(self.raw_data.accessor())
        return self.signal_mask

    def make_background(self):
        import copy

        if hasattr(self, "background"):
            return self.background

        # raw background data
        background = copy.deepcopy(self.raw_data).as_double()

        # mask out the signal areas
        mask = self.get_signal_mask()
        background.as_1d().set_selected(mask.as_1d(), 0.0)
        inv_mask = (~mask).as_1d().as_int()
        inv_mask.reshape(self.raw_data.accessor())

        from dials.algorithms.image.filter import summed_area
        from dials.array_family import flex

        summed_background = summed_area(background, (5, 5))
        summed_mask = summed_area(inv_mask, (5, 5))
        mean_background = summed_background / summed_mask.as_double()
        background.as_1d().set_selected(mask.as_1d(), mean_background.as_1d())

        self.background = background
        return background

    def get_background_subtracted_spots(self):
        if hasattr(self, "background_subtracted_spots"):
            return self.background_subtracted_spots
        mask = self.get_signal_mask()
        background = self.make_background()

        import copy

        background_subtracted_spots = self.raw_data.as_double() - background
        background_subtracted_spots.as_1d().set_selected(~mask.as_1d(), 0)
        self.background_subtracted_spots = background_subtracted_spots
        return background_subtracted_spots

    def integrate(self):
        from scitbx.array_family import flex
        from scitbx import matrix

        nslow, nfast = self.raw_data.focus()

        binary_map = self.get_signal_mask().as_1d().as_int()
        binary_map.reshape(flex.grid(1, nslow, nfast))

        # find connected regions of spots - hacking code for density modification
        # this is used to determine the integration masks for the reflections
        from cctbx import masks
        from cctbx import uctbx

        uc = uctbx.unit_cell((1, nslow, nfast, 90, 90, 90))
        flood_fill = masks.flood_fill(binary_map, uc)
        binary_map = binary_map.as_1d()

        coms = flood_fill.centres_of_mass()

        # now iterate through these blobs, find the intensity and error, and
        # find the Miller index

        UB = matrix.sqr(self.crystal.get_A())
        UBi = UB.inverse()

        winv = 1 / self.beam.get_wavelength()

        data = self.raw_data.as_double()
        background = self.make_background()

        from dials.array_family import flex

        reflections = flex.reflection_table()

        num_pixels_foreground = flex.int()
        background_mean = flex.double()
        background_sum_value = flex.double()
        background_sum_variance = flex.double()
        intensity_sum_value = flex.double()
        intensity_sum_variance = flex.double()
        miller_index = flex.miller_index()
        xyzcal_px = flex.vec3_double()
        bbox = flex.int6()
        dq = flex.double()

        fast = flex.int(self.raw_data.size(), -1)
        fast.reshape(self.raw_data.accessor())
        slow = flex.int(self.raw_data.size(), -1)
        slow.reshape(self.raw_data.accessor())

        nslow, nfast = fast.focus()
        for j in range(nslow):
            for i in range(nfast):
                fast[(j, i)] = i
                slow[(j, i)] = j

        for j in range(flood_fill.n_voids()):
            sel = binary_map == (j + 2)
            pixels = data.select(sel)
            if flex.min(pixels) < 0:
                continue

            bg_pixels = background.select(sel)
            n = pixels.size()
            d = flex.sum(pixels)
            b = flex.sum(bg_pixels)
            s = d - b

            # FIXME is this the best centre of mass? if this spot is actually
            # there, probably no, but if not there (i.e. no spot) then background
            # subtracted centre of mass likely to be very noisy - keeping the
            # background in likely to make this a little more stable
            xy = coms[j][2], coms[j][1]

            fs = fast.select(sel)
            ss = slow.select(sel)

            fd = fs.as_double()
            sd = ss.as_double()

            p = matrix.col(
                self.panel.get_pixel_lab_coord(xy)).normalize() * winv
            q = p - matrix.col(self.beam.get_s0())
            hkl = UBi * q
            ihkl = [int(round(h)) for h in hkl]

            dq.append((q - UB * ihkl).length())

            # puzzle out the bounding boxes - hack here, we have maps with the
            # fast and slow positions in; select from these then find max, min of
            # this selection
            f_min = flex.min(fs)
            f_max = flex.max(fs)

            s_min = flex.min(ss)
            s_max = flex.max(ss)

            bbox.append((f_min, f_max + 1, s_min, s_max + 1, 0, 1))

            num_pixels_foreground.append(n)
            background_mean.append(b / n)
            background_sum_value.append(b)
            background_sum_variance.append(b)
            intensity_sum_value.append(s)
            intensity_sum_variance.append(d + b)
            miller_index.append(ihkl)
            xyzcal_px.append((xy[0], xy[1], 0.0))

        reflections["num_pixels.foreground"] = num_pixels_foreground
        reflections["background.mean"] = background_mean
        reflections["background.sum.value"] = background_sum_value
        reflections["background.sum.variance"] = background_sum_variance
        reflections["intensity.sum.value"] = intensity_sum_value
        reflections["intensity.sum.variance"] = intensity_sum_variance
        reflections["miller_index"] = miller_index
        reflections["xyzcal.px"] = xyzcal_px
        reflections["id"] = flex.int(miller_index.size(), 0)
        reflections["panel"] = flex.size_t(miller_index.size(), 0)
        reflections["bbox"] = bbox
        reflections["dq"] = dq

        from dials.algorithms.shoebox import MaskCode

        reflections["shoebox"] = flex.shoebox(reflections["panel"],
                                              reflections["bbox"],
                                              allocate=True)

        reflections.extract_shoeboxes(self.imageset, verbose=True)

        # now iterate through these (how?!) and assign mask values
        fg = self.get_signal_mask()
        for reflection in reflections:
            s = reflection["shoebox"]
            b = reflection["bbox"]
            dz, dy, dx = s.mask.focus()
            for j in range(dy):
                for i in range(dx):
                    _i = b[0]
                    _j = b[2]
                    if fg[(j + _j, i + _i)]:
                        m = MaskCode.Valid | MaskCode.Foreground
                    else:
                        m = MaskCode.Valid | MaskCode.Background
                    s.mask[(0, j, i)] = m

        return reflections

    def find_spots(self, min_spot_size=2, max_spot_size=100):
        from dials.algorithms.spot_finding.threshold import XDSThresholdStrategy
        from dials.model.data import PixelList
        from dials.model.data import PixelListLabeller

        image = self.raw_data
        mask = self.imageset.get_mask(0)[0]

        threshold_image = XDSThresholdStrategy()

        threshold_mask = threshold_image(image, mask)
        plist = PixelList(0, image, threshold_mask)

        pixel_labeller = PixelListLabeller()
        pixel_labeller.add(plist)

        creator = flex.PixelListShoeboxCreator(pixel_labeller, 0, 0, True,
                                               min_spot_size, max_spot_size,
                                               False)
        shoeboxes = creator.result()

        # turns out we need to manually filter the list to get a sensible answer
        size = creator.spot_size()
        big = size > max_spot_size
        small = size < min_spot_size
        bad = big | small
        shoeboxes = shoeboxes.select(~bad)

        centroid = shoeboxes.centroid_valid()
        intensity = shoeboxes.summed_intensity()
        observed = flex.observation(shoeboxes.panels(), centroid, intensity)

        reflections = flex.reflection_table(observed, shoeboxes)
        return reflections

    def index(self, reflections):

        # FIXME allow for the fact that there could be > 1 lattice on here to
        # e.g. assign index over small spherical radius

        miller_index = flex.miller_index()
        UB = matrix.sqr(self.crystal.get_A())
        UBi = UB.inverse()

        self.qobs = []

        for refl in reflections:
            x, y, z = refl["xyzobs.px.value"]
            p = matrix.col(self.panel.get_pixel_lab_coord((x, y)))
            q = p.normalize() / self.wavelength - self.s0
            self.qobs.append(q)
            hkl = UBi * q
            ihkl = [int(round(h)) for h in hkl]
            miller_index.append(ihkl)

        reflections["miller_index"] = miller_index
        self.data = reflections
        return reflections
コード例 #11
0
class CrystalRefiner(object):
    """
    A class to perform refinement of crystal parameters

    """
    def __init__(self, experiment, reflections, mosaicity, params):
        """
        Perform the refinement

        :param experiment: The experiment
        :param reflections: The reflections
        :param mosaicity: The mosaicity
        :param params: The parameters

        """
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation, )
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalOrientationParameterisation, )
        from dials_scratch.jmp.stills import Model
        from dials.array_family import flex
        from scitbx import simplex
        from math import sqrt

        # Store the input
        self.experiment = experiment
        self.reflections = reflections
        self.mosaicity = mosaicity
        self.params = params

        # Get the data and image mask
        data = self.experiment.imageset.get_raw_data(0)[0]
        mask = self.experiment.imageset.get_mask(0)[0]

        # Initialise the model
        self.model = Model(
            beam=self.experiment.beam,
            detector=self.experiment.detector,
            crystal=self.experiment.crystal,
            reflections=self.reflections,
            image_data=data,
            image_mask=mask,
            mosaicity=self.mosaicity,
            bandpass=0.0,
            foreground_limit=0.3,
            background_limit=0.5,
            num_samples=self.params.refinement.profile.num_samples,
        )

        # Get the crystal model and the parameterisation
        self.crystal = self.experiment.crystal
        self.cucp = CrystalUnitCellParameterisation(self.crystal)
        self.cop = CrystalOrientationParameterisation(self.crystal)

        # Get the current values and generate some offsets
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        # The optimization history
        self.history = []

        # Get the initial cell and initial score
        initial_cell = self.crystal.get_unit_cell()
        initial_score = self.target(values)

        # Perform the optimization
        optimizer = simple_simplex(values, offset, self, 2000)
        result = optimizer.get_solution()
        print("Initial cell:", initial_cell)
        print("Final cell:  ", self.crystal.get_unit_cell())

        # Compute RMSD
        xcal, ycal, _ = self.model.observed().parts()
        xobs, yobs, _ = self.model.predicted().parts()
        rmsd_x = sqrt(flex.sum((xcal - xobs)**2) / len(xcal))
        rmsd_y = sqrt(flex.sum((ycal - yobs)**2) / len(ycal))
        print("RMSD X, Y (px): %f, %f" % (rmsd_x, rmsd_y))

    def target(self, vector):
        """
        The target function

        """
        from dials.array_family import flex
        from math import sqrt

        # Get the cell and orientation parameters
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)

        # Update the cell and orientation parameters
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]
        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        # Update the model
        self.model.crystal = self.crystal
        self.model.update(pixel_lookup=False)

        # Get the observed and predicted position
        T = self.model.success()
        O = self.model.observed()
        C = self.model.predicted()

        # Select only those successes
        selection = T == True
        Xobs, Yobs, Zobs = O.select(selection).parts()
        Xcal, Ycal, Zcal = C.select(selection).parts()

        # Compute the rmsd between observed and calculated
        score = flex.sum((Xobs - Xcal)**2 + (Yobs - Ycal)**2 +
                         (Zobs - Zcal)**2)

        # Append to the history
        self.history.append((tst_cell, tst_orientation, score))

        # Print some info
        print(
            "Cell: %.3f %.3f %.3f %.3f %.3f %.3f; Phi: %.3f %.3f %.3f; RMSD: %.3f"
            % (tuple(self.crystal.get_unit_cell().parameters()) +
               tuple(tst_orientation) + tuple((sqrt(score / len(Xobs)), ))))
        return score
コード例 #12
0
class CrystalRefiner(object):
    def __init__(self, experiment, reflections, parameters):
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation, )
        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalOrientationParameterisation, )

        # Store the input
        self.experiment = experiment
        self.reflections = reflections
        self.parameters = parameters

        # Get the crystal model and the parameterisation
        self.crystal = self.experiment.crystal
        self.cucp = CrystalUnitCellParameterisation(self.crystal)
        self.cop = CrystalOrientationParameterisation(self.crystal)

        # Get the current values and generate some offsets
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        # The optimization history
        self.history = []

        # Get the initial cell and initial score
        initial_cell = self.crystal.get_unit_cell()
        initial_orientation = self.crystal.get_U()
        initial_score = self.target(values)

        # Perform the optimization
        optimizer = simple_simplex(values, offset, self, 2000)
        result = optimizer.get_solution()

        # Print some information
        fmt = "(%.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f)"
        print("Initial cell:", initial_cell)
        print("Final cell:  ", self.crystal.get_unit_cell())
        print("Initial orientation: ", fmt % tuple(initial_orientation))
        print("Final orientation: ", fmt % tuple(self.crystal.get_U()))

        # Print RMSD
        Xobs, Yobs, _ = self.reflections["xyzobs.px.value"].parts()
        Xcal, Ycal, _ = self.reflections["xyzcal.px"].parts()
        rmsd_x = sqrt(flex.sum((Xcal - Xobs)**2) / len(Xcal))
        rmsd_y = sqrt(flex.sum((Ycal - Yobs)**2) / len(Ycal))
        print("RMSD X, Y (px): %f, %f" % (rmsd_x, rmsd_y))

    def target(self, vector):
        """
        The target function

        """
        from dials.array_family import flex
        from math import sqrt

        # Get the cell and orientation parameters
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)

        # Update the cell and orientation parameters
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]
        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        # Generate predicted positions
        s1_cal, s2_cal = self.generate_predictions(self.experiment,
                                                   self.reflections,
                                                   self.parameters)

        # Do the ray intersection
        self.reflections["s1"] = s1_cal
        self.reflections["s2"] = s2_cal
        self.reflections["xyzcal.px"] = flex.vec3_double([
            self.experiment.detector[0].get_ray_intersection_px(s1) + (0, )
            for s1 in s1_cal
        ])

        # Get predictions and observations
        Xobs, Yobs, _ = self.reflections["xyzobs.px.value"].parts()
        Xcal, Ycal, _ = self.reflections["xyzcal.px"].parts()

        # Compute the rmsd between observed and calculated
        score = flex.sum((Xobs - Xcal)**2 + (Yobs - Ycal)**2)

        # Append to the history
        self.history.append((tst_cell, tst_orientation, score))

        # Print some info
        print(
            "Cell: %.3f %.3f %.3f %.3f %.3f %.3f; Phi: %.3f %.3f %.3f; RMSD: %.3f"
            % (tuple(self.crystal.get_unit_cell().parameters()) +
               tuple(tst_orientation) + tuple((sqrt(score / len(Xobs)), ))))
        return score

    def generate_predictions(self, experiment, reflections, parameters):

        # Create the mosaicity model
        parameterisation = MosaicityParameterisation(parameters)

        # The crystal A and beam s0
        A = matrix.sqr(experiment.crystal.get_A())
        s0 = matrix.col(experiment.beam.get_s0())
        s0_length = s0.length()

        # Compute all the vectors
        s1_cal = flex.vec3_double()
        s2_cal = flex.vec3_double()
        for i in range(len(reflections)):

            # Compute the reciprocal lattice vector
            h = matrix.col(reflections[i]["miller_index"])
            r = A * h
            s2 = s0 + r

            # Rotate the covariance matrix
            R = compute_change_of_basis_operation(s0, s2)
            S = R * parameterisation.sigma() * R.transpose()
            mu = R * s2
            assert abs(1 - mu.normalize().dot(matrix.col((0, 0, 1)))) < 1e-7

            # Partition the mean vector
            mu1 = matrix.col((mu[0], mu[1]))
            mu2 = mu[2]

            # Partition the covariance matrix
            S11 = matrix.sqr((S[0], S[1], S[3], S[4]))
            S12 = matrix.col((S[2], S[5]))
            S21 = matrix.col((S[6], S[7])).transpose()
            S22 = S[8]

            # Compute the conditional mean
            mubar = mu1 + S12 * (1 / S22) * (s0_length - mu2)

            # Compute the vector and rotate
            v = matrix.col(
                (mubar[0], mubar[1], s0_length)).normalize() * s0_length
            s1 = R.transpose() * v

            # Append the 2 vectors
            s1_cal.append(s1)
            s2_cal.append(s2)

        # Return the predicted vectors
        return s1_cal, s2_cal
コード例 #13
0
def test(args=[]):

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
        include scope dials.tests.algorithms.refinement.geometry_phil
        include scope dials.tests.algorithms.refinement.minimiser_phil
        """,
        process_includes=True,
    )

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1",
    )

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2",
    )

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for an 18 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 180),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(180)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi / 10)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal1,
            imageset=None,
        ))
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal2,
            imageset=None,
        ))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2.0, 2.0, 2.0])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.5 Angstrom sphere for crystal1
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices1 = index_generator.to_array()

    # All indices in a 2.5 Angstrom sphere for crystal2
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices2 = index_generator.to_array()

    # Predict rays within the sequence range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1["id"] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices2, experiment_id=1)
    obs_refs2["id"] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1["xyzobs.mm.value"] = obs_refs1["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 18.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.0)**2)
    obs_refs1["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.0)**2)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    # scan static first
    params = phil_scope.fetch(source=parse("")).extract()
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # Ensure all models have scan-varying state set
    # (https://github.com/dials/dials/issues/798)
    refined_experiments = refiner.get_experiments()
    sp = [xl.get_num_scan_points() for xl in refined_experiments.crystals()]

    assert sp.count(181) == 2
コード例 #14
0
class ModelState(object):
    """
    A class to keep track of the model state

    """
    def __init__(
        self,
        experiment,
        mosaicity_parameterisation,
        fix_mosaic_spread=False,
        fix_wavelength_spread=False,
        fix_unit_cell=False,
        fix_orientation=False,
    ):
        """
        Initialise the model state

        """

        # Save the crystal model
        self.experiment = experiment
        self.crystal = experiment.crystal

        # The U and P parameterisation
        self.U_parameterisation = CrystalOrientationParameterisation(
            self.crystal)
        self.B_parameterisation = CrystalUnitCellParameterisation(self.crystal)

        # The M, L and W parameterisations
        self.M_parameterisation = mosaicity_parameterisation

        # Set the flags to fix parameters
        self._is_mosaic_spread_fixed = fix_mosaic_spread
        self._is_wavelength_spread_fixed = fix_wavelength_spread
        self._is_unit_cell_fixed = fix_unit_cell
        self._is_orientation_fixed = fix_orientation

    def is_orientation_fixed(self):
        """
        Return whether the orientation is fixed

        """
        return self._is_orientation_fixed

    def is_unit_cell_fixed(self):
        """
        Return whether the unit cell is fixed

        """
        return self._is_unit_cell_fixed

    def is_mosaic_spread_fixed(self):
        """
        Return whether the mosaic spread is fixed

        """
        return self._is_mosaic_spread_fixed

    def is_mosaic_spread_angular(self):
        """
        Return whether the mosaic spread is angular

        """
        return self.M_parameterisation.is_angular()

    def is_wavelength_spread_fixed(self):
        """
        Return whether the wavelength spread is fixed

        """
        return self._is_wavelength_spread_fixed

    def get_unit_cell(self):
        """
        Get the crystal unit cell

        """
        return self.crystal.get_unit_cell()

    def get_U(self):
        """
        Get the crystal U matrix

        """
        return matrix.sqr(self.crystal.get_U())

    def get_B(self):
        """
        Get the crystal B matrix

        """
        return matrix.sqr(self.crystal.get_B())

    def get_A(self):
        """
        Get the crystal A matrix

        """
        return matrix.sqr(self.crystal.get_A())

    def get_M(self):
        """
        Get the Sigma M matrix

        """
        return self.M_parameterisation.sigma()

    def get_U_params(self):
        """
        Get the U parameters

        """
        return flex.double(self.U_parameterisation.get_param_vals())

    def get_B_params(self):
        """
        Get the B parameters

        """
        return flex.double(self.B_parameterisation.get_param_vals())

    def get_M_params(self):
        """
        Get the M parameters

        """
        return self.M_parameterisation.parameters()

    def set_U_params(self, params):
        """
        Set the U parameters

        """
        return self.U_parameterisation.set_param_vals(params)

    def set_B_params(self, params):
        """
        Set the B parameters

        """
        return self.B_parameterisation.set_param_vals(params)

    def set_M_params(self, params):
        """
        Set the M parameters

        """
        return self.M_parameterisation.set_parameters(params)

    def num_U_params(self):
        """
        Get the number of U parameters

        """
        return len(self.get_U_params())

    def num_B_params(self):
        """
        Get the number of B parameters

        """
        return len(self.get_B_params())

    def num_M_params(self):
        """
        Get the number of M parameters

        """
        return len(self.get_M_params())

    def get_dU_dp(self):
        """
        Get the first derivatives of U w.r.t its parameters

        """
        return flex.mat3_double(self.U_parameterisation.get_ds_dp())

    def get_dB_dp(self):
        """
        Get the first derivatives of B w.r.t its parameters

        """
        return flex.mat3_double(self.B_parameterisation.get_ds_dp())

    def get_dM_dp(self):
        """
        Get the first derivatives of M w.r.t its parameters

        """
        return self.M_parameterisation.first_derivatives()

    def get_active_parameters(self):
        """
        Get the active parameters in order: U, B, M, L, W

        """
        active_params = flex.double()
        if not self._is_orientation_fixed:
            active_params.extend(self.get_U_params())
        if not self._is_unit_cell_fixed:
            active_params.extend(self.get_B_params())
        if not self._is_mosaic_spread_fixed:
            active_params.extend(self.get_M_params())
        if not self._is_wavelength_spread_fixed:
            active_params.extend(self.get_L_params())
        assert len(active_params) > 0
        return active_params

    def set_active_parameters(self, params):
        """
        Set the active parameters in order: U, B, M, L, W

        """
        if not self._is_orientation_fixed:
            temp = params[:self.num_U_params()]
            params = params[self.num_U_params():]
            self.set_U_params(temp)
        if not self._is_unit_cell_fixed:
            temp = params[:self.num_B_params()]
            params = params[self.num_B_params():]
            self.set_B_params(temp)
        if not self._is_mosaic_spread_fixed:
            temp = params[:self.num_M_params()]
            params = params[self.num_M_params():]
            self.set_M_params(temp)
        if not self._is_wavelength_spread_fixed:
            temp = params[:self.num_L_params()]
            params = params[self.num_L_params():]
            self.set_L_params(temp)

    def get_labels(self):
        """
        Get the parameter labels

        """
        labels = []
        if not self._is_orientation_fixed:
            for i in range(len(self.get_U_params())):
                labels.append("Crystal_U_%d" % i)
        if not self._is_unit_cell_fixed:
            for i in range(len(self.get_B_params())):
                labels.append("Crystal_B_%d" % i)
        if not self._is_mosaic_spread_fixed:
            for i in range(len(self.get_M_params())):
                labels.append("Mosaicity_%d" % i)
        if not self._is_wavelength_spread_fixed:
            labels.append("Wavelength_Spread")
        assert len(labels) > 0
        return labels
コード例 #15
0
#print "Total number of reflections excited for crystal1", len(obs_refs1)
#print "Total number of reflections excited for crystal2", len(obs_refs2)

# concatenate reflection lists
obs_refs1.extend(obs_refs2)
obs_refs = obs_refs1

###############################
# Undo known parameter shifts #
###############################

s0_param.set_param_vals(s0_p_vals)
det_param.set_param_vals(det_p_vals)
xl1o_param.set_param_vals(xlo_p_vals[0])
xl2o_param.set_param_vals(xlo_p_vals[1])
xl1uc_param.set_param_vals(xluc_p_vals[0])
xl2uc_param.set_param_vals(xluc_p_vals[1])

#print "Initial values of parameters are"
#msg = "Parameters: " + "%.5f " * len(pred_param)
#print msg % tuple(pred_param.get_param_vals())
#print

# make a refiner
from dials.algorithms.refinement.refiner import phil_scope
from libtbx.phil import parse
params = phil_scope.fetch(source=parse('')).extract()

# in case we want a plot
params.refinement.refinery.track_parameter_correlation=True
コード例 #16
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Import for surgery on reflection_tables
    from dials.array_family import flex

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Crystal parameterisations
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        StillsExperimentsPredictor,
    )
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    # build models, with a larger crystal than default in order to get enough
    # reflections on the 'still' image
    param = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""
    models = setup_geometry.Extract(master_phil,
                                    cmdline_args=args,
                                    local_overrides=param)

    crystal = models.crystal
    mydetector = models.detector
    mygonio = models.goniometer
    mybeam = models.beam

    # Build a mock scan for a 1.5 degree wedge. Only used for generating indices near
    # the Ewald sphere
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 1.5),
        epochs=list(range(1)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert approx_equal(im_width, 1.5 * pi / 180.0)

    # Build experiment lists
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   crystal=crystal,
                   imageset=None))
    scans_experiments = ExperimentList()
    scans_experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            crystal=crystal,
            goniometer=mygonio,
            scan=myscan,
            imageset=None,
        ))

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    ################################
    # Apply known parameter shifts #
    ################################

    # rotate crystal (=5 mrad each rotation)
    xlo_p_vals = []
    p_vals = xlo_param.get_param_vals()
    xlo_p_vals.append(p_vals)
    new_p_vals = [a + b for a, b in zip(p_vals, [5.0, 5.0, 5.0])]
    xlo_param.set_param_vals(new_p_vals)

    # change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
    # gamma angle)
    xluc_p_vals = []
    p_vals = xluc_param.get_param_vals()
    xluc_p_vals.append(p_vals)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [1.0, 1.0, -1.0, 0.0, 0.0, 0.5])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # keep track of the target crystal model to compare with refined
    from copy import deepcopy

    target_crystal = deepcopy(crystal)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere for crystal
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Build a ray predictor and predict rays close to the Ewald sphere by using
    # the narrow rotation scan
    ref_predictor = ScansRayPredictor(scans_experiments, sweep_range)
    obs_refs = ref_predictor(indices, experiment_id=0)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Add in flags and ID columns by copying into standard reflection table
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Re-predict using the stills reflection predictor
    stills_ref_predictor = StillsExperimentsPredictor(stills_experiments)
    obs_refs_stills = stills_ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs_stills["xyzobs.mm.value"] = obs_refs_stills["xyzcal.mm"]

    ###############################
    # Undo known parameter shifts #
    ###############################

    xlo_param.set_param_vals(xlo_p_vals[0])
    xluc_param.set_param_vals(xluc_p_vals[0])

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope

    params = phil_scope.fetch(source=parse("")).extract()

    # Change this to get a plot
    do_plot = False
    if do_plot:
        params.refinement.refinery.journal.track_parameter_correlation = True

    from dials.algorithms.refinement.refiner import RefinerFactory

    # decrease bin_size_fraction to terminate on RMSD convergence
    params.refinement.target.bin_size_fraction = 0.01
    params.refinement.parameterisation.beam.fix = "all"
    params.refinement.parameterisation.detector.fix = "all"
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs_stills, stills_experiments)

    # run refinement
    history = refiner.run()

    # regression tests
    assert len(history["rmsd"]) == 9

    refined_crystal = refiner.get_experiments()[0].crystal
    uc1 = refined_crystal.get_unit_cell()
    uc2 = target_crystal.get_unit_cell()
    assert uc1.is_similar_to(uc2)

    if do_plot:
        plt = refiner.parameter_correlation_plot(
            len(history["parameter_correlation"]) - 1)
        plt.show()
コード例 #17
0
xlo_p_vals = xlo_param.get_param_vals()
p_vals = [a + b for a, b in zip(xlo_p_vals, [2., 2., 2.])]
xlo_param.set_param_vals(p_vals)

# change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
# gamma angle)
xluc_p_vals = xluc_param.get_param_vals()
cell_params = mycrystal.get_unit_cell().parameters()
cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0,
                                                   0.0, 0.1])]
new_uc = unit_cell(cell_params)
newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
S.set_orientation(orientation=newB)
X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
xluc_param.set_param_vals(X)

#############################
# Generate some reflections #
#############################

print "Reflections will be generated with the following geometry:"
print mybeam
print mydetector
print mycrystal
print "Target values of parameters are"
msg = "Parameters: " + "%.5f " * len(pred_param)
print msg % tuple(pred_param.get_param_vals())
print

# All indices in a 2.0 Angstrom sphere
コード例 #18
0
#print "Total number of reflections excited for crystal1", len(obs_refs1)
#print "Total number of reflections excited for crystal2", len(obs_refs2)

# concatenate reflection lists
obs_refs1.extend(obs_refs2)
obs_refs = obs_refs1

###############################
# Undo known parameter shifts #
###############################

s0_param.set_param_vals(s0_p_vals)
det_param.set_param_vals(det_p_vals)
xl1o_param.set_param_vals(xlo_p_vals[0])
xl2o_param.set_param_vals(xlo_p_vals[1])
xl1uc_param.set_param_vals(xluc_p_vals[0])
xl2uc_param.set_param_vals(xluc_p_vals[1])

#print "Initial values of parameters are"
#msg = "Parameters: " + "%.5f " * len(pred_param)
#print msg % tuple(pred_param.get_param_vals())
#print

# make a refiner
from dials.algorithms.refinement.refiner import phil_scope
params = phil_scope.fetch(source=parse('')).extract()

# in case we want a plot
params.refinement.refinery.track_parameter_correlation = True

# scan static first
コード例 #19
0
def test_refinement(dials_regression):
    """Test a refinement run"""

    # Get a beam and detector from a experiments. This one has a CS-PAD, but that
    # is irrelevant
    data_dir = os.path.join(dials_regression, "refinement_test_data",
                            "hierarchy_test")
    experiments_path = os.path.join(data_dir, "datablock.json")
    assert os.path.exists(experiments_path)

    # load models
    from dxtbx.model.experiment_list import ExperimentListFactory

    experiments = ExperimentListFactory.from_serialized_format(
        experiments_path, check_format=False)
    im_set = experiments.imagesets()[0]
    detector = deepcopy(im_set.get_detector())
    beam = im_set.get_beam()

    # Invent a crystal, goniometer and scan for this test
    from dxtbx.model import Crystal

    crystal = Crystal((40.0, 0.0, 0.0), (0.0, 40.0, 0.0), (0.0, 0.0, 40.0),
                      space_group_symbol="P1")
    orig_xl = deepcopy(crystal)

    from dxtbx.model import GoniometerFactory

    goniometer = GoniometerFactory.known_axis((1.0, 0.0, 0.0))

    # Build a mock scan for a 180 degree sequence
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sequence_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        ))

    # simulate some reflections
    refs, _ = generate_reflections(experiments)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # alpha and beta angles)
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalUnitCellParameterisation, )

    xluc_param = CrystalUnitCellParameterisation(crystal)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
    ]
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
    from scitbx import matrix

    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # reparameterise the crystal at the perturbed geometry
    xluc_param = CrystalUnitCellParameterisation(crystal)

    # Dummy parameterisations for other models
    beam_param = None
    xlo_param = None
    det_param = None

    # parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.parameter_report import (
        ParameterReporter, )

    pred_param = TwoThetaPredictionParameterisation(experiments, det_param,
                                                    beam_param, xlo_param,
                                                    [xluc_param])
    param_reporter = ParameterReporter(det_param, beam_param, xlo_param,
                                       [xluc_param])

    # reflection manager
    refman = TwoThetaReflectionManager(refs, experiments, nref_per_degree=20)

    # reflection predictor
    ref_predictor = TwoThetaExperimentsPredictor(experiments)

    # target function
    target = TwoThetaTarget(experiments, ref_predictor, refman, pred_param)

    # minimisation engine
    from dials.algorithms.refinement.engine import (
        LevenbergMarquardtIterations as Refinery, )

    refinery = Refinery(
        target=target,
        prediction_parameterisation=pred_param,
        log=None,
        max_iterations=20,
    )

    # Refiner
    from dials.algorithms.refinement.refiner import Refiner

    refiner = Refiner(
        experiments=experiments,
        pred_param=pred_param,
        param_reporter=param_reporter,
        refman=refman,
        target=target,
        refinery=refinery,
    )
    refiner.run()

    # compare crystal with original crystal
    refined_xl = refiner.get_experiments()[0].crystal

    # print refined_xl
    assert refined_xl.is_similar_to(orig_xl,
                                    uc_rel_length_tolerance=0.001,
                                    uc_abs_angle_tolerance=0.01)
コード例 #20
0
class Blueberry(object):
    def __init__(self, reflection_file, experiment_file):
        # make a pie

        data = pickle.load(open(reflection_file, "rb"))
        print("%d reflections" % data.size())

        self.data = data.select(data["intensity.sum.variance"] > 0)

        i = data["intensity.sum.value"]
        v = data["intensity.sum.variance"]
        s = flex.sqrt(v)
        self.i_s = i / s

        from dxtbx.model.experiment_list import ExperimentListFactory

        expt = ExperimentListFactory.from_json_file(experiment_file)
        crystal = expt.crystals()[0]
        self.s0 = matrix.col(expt.beams()[0].get_s0())

        from dials.algorithms.refinement.parameterisation.crystal_parameters import (
            CrystalUnitCellParameterisation,
            CrystalOrientationParameterisation,
        )

        self.crystal = crystal
        self.cucp = CrystalUnitCellParameterisation(crystal)
        self.cop = CrystalOrientationParameterisation(crystal)

        # 0-point and deltas
        values = flex.double(self.cucp.get_param_vals() +
                             self.cop.get_param_vals())
        offset = flex.double([0.01 * v for v in self.cucp.get_param_vals()] +
                             [0.1, 0.1, 0.1])

        initial = crystal.get_unit_cell()
        initial_score = self.target(values)
        doohicky = simple_simplex(values, offset, self, 2000)
        best = doohicky.get_solution()
        print("Initial cell:", initial)
        print("Final cell:  ", crystal.get_unit_cell())
        print("Score change", initial_score, self.target(best, do_print=False))
        self.best = best

    def target(self, vector, do_print=False):
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        if do_print:
            print("Cell: %.3f %.3f %.3f %.3f %.3f %.3f" %
                  tuple(self.crystal.get_unit_cell().parameters()))
            print("Phi(1,2,3): %.3f %.3f %.3f" % tuple(tst_orientation))

        UB = matrix.sqr(self.crystal.get_A())

        return self.score(UB)

    def score_old(self, RUB):
        score = 0.0
        for j in range(self.data.size()):
            hkl = self.data["miller_index"][j]
            q = RUB * hkl
            score += self.i_s[j] * abs((q + self.s0).length() -
                                       matrix.col(self.data["s1"][j]).length())
        return score

    def score(self, RUB):
        score = 0.0
        for j in range(self.data.size()):
            hkl = self.data["miller_index"][j]
            q = RUB * hkl
            score += abs((q + self.s0).length() - self.s0.length())
        return score

    def plotify(self):
        vector = self.best
        cell_parms = self.cucp.get_param_vals()
        orientation_parms = self.cop.get_param_vals()
        assert len(vector) == len(cell_parms) + len(orientation_parms)
        tst_cell = vector[:len(cell_parms)]
        tst_orientation = vector[len(cell_parms):len(cell_parms) +
                                 len(orientation_parms)]

        self.cucp.set_param_vals(tst_cell)
        self.cop.set_param_vals(tst_orientation)

        from scitbx import matrix

        UB = matrix.sqr(self.crystal.get_A())
        data = self.data
        for j in range(data.size()):
            hkl = data["miller_index"][j]
            q = UB * hkl
            print((q + self.s0).length() - matrix.col(data["s1"][j]).length(),
                  self.i_s[j])

        return