コード例 #1
0
  def run_stills_pred_param(self, verbose = False):

    if verbose:
      print 'Testing derivatives for StillsPredictionParameterisation'
      print '========================================================'

    # Build a prediction parameterisation for the stills experiment
    pred_param = StillsPredictionParameterisation(self.stills_experiments,
                   detector_parameterisations = [self.det_param],
                   beam_parameterisations = [self.s0_param],
                   xl_orientation_parameterisations = [self.xlo_param],
                   xl_unit_cell_parameterisations = [self.xluc_param])

    # Predict the reflections in place. Must do this ahead of calculating
    # the analytical gradients so quantities like s1 are correct
    from dials.algorithms.refinement.prediction import ExperimentsPredictor
    ref_predictor = ExperimentsPredictor(self.stills_experiments)
    ref_predictor.update()
    ref_predictor.predict(self.reflections)

    # get analytical gradients
    an_grads = pred_param.get_gradients(self.reflections)

    fd_grads = self.get_fd_gradients(pred_param, ref_predictor)

    for i, (an_grad, fd_grad) in enumerate(zip(an_grads, fd_grads)):

      # compare FD with analytical calculations
      if verbose: print "\nParameter {0}: {1}". format(i,  fd_grad['name'])

      for idx, name in enumerate(["dX_dp", "dY_dp", "dDeltaPsi_dp"]):
        if verbose: print name
        a = fd_grad[name]
        b = an_grad[name]

        abs_error = a - b
        denom = a + b

        fns = five_number_summary(abs_error)
        if verbose: print ("  summary of absolute errors: %9.6f %9.6f %9.6f " + \
          "%9.6f %9.6f") % fns
        assert flex.max(flex.abs(abs_error)) < 0.0003
        # largest absolute error found to be about 0.00025 for dY/dp of
        # Crystal0g_param_3. Reject outlying absolute errors and test again.
        iqr = fns[3] - fns[1]

        # skip further stats on errors with an iqr of near zero, e.g. dDeltaPsi_dp
        # for detector parameters, which are all equal to zero
        if iqr < 1.e-10:
          continue

        sel1 = abs_error < fns[3] + 1.5 * iqr
        sel2 = abs_error > fns[1] - 1.5 * iqr
        sel = sel1 & sel2
        tst = flex.max_index(flex.abs(abs_error.select(sel)))
        tst_val = abs_error.select(sel)[tst]
        n_outliers = sel.count(False)
        if verbose: print ("  {0} outliers rejected, leaving greatest " + \
          "absolute error: {1:9.6f}").format(n_outliers, tst_val)
        # largest absolute error now 0.000086 for dX/dp of Beam0Mu2
        assert abs(tst_val) < 0.00009

        # Completely skip parameters with FD gradients all zero (e.g. gradients of
        # DeltaPsi for detector parameters)
        sel1 = flex.abs(a) < 1.e-10
        if sel1.all_eq(True):
          continue

        # otherwise calculate normalised errors, by dividing absolute errors by
        # the IQR (more stable than relative error calculation)
        norm_error = abs_error / iqr
        fns = five_number_summary(norm_error)
        if verbose: print ("  summary of normalised errors: %9.6f %9.6f %9.6f " + \
          "%9.6f %9.6f") % fns
        # largest normalised error found to be about 25.7 for dY/dp of
        # Crystal0g_param_3.
        try:
          assert flex.max(flex.abs(norm_error)) < 30
        except AssertionError as e:
          e.args += ("extreme normalised error value: {0}".format(
                     flex.max(flex.abs(norm_error))),)
          raise e

        # Reject outlying normalised errors and test again
        iqr = fns[3] - fns[1]
        if iqr > 0.:
          sel1 = norm_error < fns[3] + 1.5 * iqr
          sel2 = norm_error > fns[1] - 1.5 * iqr
          sel = sel1 & sel2
          tst = flex.max_index(flex.abs(norm_error.select(sel)))
          tst_val = norm_error.select(sel)[tst]
          n_outliers = sel.count(False)

          # most outliers found for for dY/dp of Crystal0g_param_3 (which had
          # largest errors, so no surprise there).
          try:
            assert n_outliers < 250
          except AssertionError as e:
            e.args += ("too many outliers rejected: {0}".format(n_outliers),)
            raise e

          if verbose: print ("  {0} outliers rejected, leaving greatest " + \
            "normalised error: {1:9.6f}").format(n_outliers, tst_val)
          # largest normalied error now about -4. for dX/dp of Detector0Tau1
          assert abs(tst_val) < 4.5
    if verbose: print

    return
コード例 #2
0
def test_stills_pred_param(tc):
    print("Testing derivatives for StillsPredictionParameterisation")
    print("========================================================")

    # Build a prediction parameterisation for the stills experiment
    pred_param = StillsPredictionParameterisation(
        tc.stills_experiments,
        detector_parameterisations=[tc.det_param],
        beam_parameterisations=[tc.s0_param],
        xl_orientation_parameterisations=[tc.xlo_param],
        xl_unit_cell_parameterisations=[tc.xluc_param],
    )

    # Predict the reflections in place. Must do this ahead of calculating
    # the analytical gradients so quantities like s1 are correct

    ref_predictor = StillsExperimentsPredictor(tc.stills_experiments)
    ref_predictor(tc.reflections)

    # get analytical gradients
    an_grads = pred_param.get_gradients(tc.reflections)

    fd_grads = tc.get_fd_gradients(pred_param, ref_predictor)

    for i, (an_grad, fd_grad) in enumerate(zip(an_grads, fd_grads)):

        # compare FD with analytical calculations
        print(f"\nParameter {i}: {fd_grad['name']}")

        for name in ["dX_dp", "dY_dp", "dDeltaPsi_dp"]:
            print(name)
            a = fd_grad[name]
            b = an_grad[name]

            abs_error = a - b

            fns = five_number_summary(abs_error)
            print(("  summary of absolute errors: %9.6f %9.6f %9.6f " +
                   "%9.6f %9.6f") % fns)
            assert flex.max(flex.abs(abs_error)) < 0.0003
            # largest absolute error found to be about 0.00025 for dY/dp of
            # Crystal0g_param_3. Reject outlying absolute errors and test again.
            iqr = fns[3] - fns[1]

            # skip further stats on errors with an iqr of near zero, e.g. dDeltaPsi_dp
            # for detector parameters, which are all equal to zero
            if iqr < 1.0e-10:
                continue

            sel1 = abs_error < fns[3] + 1.5 * iqr
            sel2 = abs_error > fns[1] - 1.5 * iqr
            sel = sel1 & sel2
            tst = flex.max_index(flex.abs(abs_error.select(sel)))
            tst_val = abs_error.select(sel)[tst]
            n_outliers = sel.count(False)
            print(("  {0} outliers rejected, leaving greatest " +
                   "absolute error: {1:9.6f}").format(n_outliers, tst_val))
            # largest absolute error now 0.000086 for dX/dp of Beam0Mu2
            assert abs(tst_val) < 0.00009

            # Completely skip parameters with FD gradients all zero (e.g. gradients of
            # DeltaPsi for detector parameters)
            sel1 = flex.abs(a) < 1.0e-10
            if sel1.all_eq(True):
                continue

            # otherwise calculate normalised errors, by dividing absolute errors by
            # the IQR (more stable than relative error calculation)
            norm_error = abs_error / iqr
            fns = five_number_summary(norm_error)
            print(("  summary of normalised errors: %9.6f %9.6f %9.6f " +
                   "%9.6f %9.6f") % fns)
            # largest normalised error found to be about 25.7 for dY/dp of
            # Crystal0g_param_3.
            try:
                assert flex.max(flex.abs(norm_error)) < 30
            except AssertionError as e:
                e.args += (
                    f"extreme normalised error value: {flex.max(flex.abs(norm_error))}",
                )
                raise e

            # Reject outlying normalised errors and test again
            iqr = fns[3] - fns[1]
            if iqr > 0.0:
                sel1 = norm_error < fns[3] + 1.5 * iqr
                sel2 = norm_error > fns[1] - 1.5 * iqr
                sel = sel1 & sel2
                tst = flex.max_index(flex.abs(norm_error.select(sel)))
                tst_val = norm_error.select(sel)[tst]
                n_outliers = sel.count(False)

                # most outliers found for for dY/dp of Crystal0g_param_3 (which had
                # largest errors, so no surprise there).
                try:
                    assert n_outliers < 250
                except AssertionError as e:
                    e.args += (f"too many outliers rejected: {n_outliers}", )
                    raise e

                print(
                    ("  {0} outliers rejected, leaving greatest " +
                     "normalised error: {1:9.6f}").format(n_outliers, tst_val))
                # largest normalied error now about -4. for dX/dp of Detector0Tau1
                assert abs(tst_val) < 6, f"should be < 6, not {tst_val}"
コード例 #3
0
    def run_stills_pred_param(self, verbose=False):

        if verbose:
            print 'Testing derivatives for StillsPredictionParameterisation'
            print '========================================================'

        # Build a prediction parameterisation for the stills experiment
        pred_param = StillsPredictionParameterisation(
            self.stills_experiments,
            detector_parameterisations=[self.det_param],
            beam_parameterisations=[self.s0_param],
            xl_orientation_parameterisations=[self.xlo_param],
            xl_unit_cell_parameterisations=[self.xluc_param])

        # Predict the reflections in place. Must do this ahead of calculating
        # the analytical gradients so quantities like s1 are correct
        from dials.algorithms.refinement.prediction import ExperimentsPredictor
        ref_predictor = ExperimentsPredictor(self.stills_experiments)
        ref_predictor(self.reflections)

        # get analytical gradients
        an_grads = pred_param.get_gradients(self.reflections)

        fd_grads = self.get_fd_gradients(pred_param, ref_predictor)

        for i, (an_grad, fd_grad) in enumerate(zip(an_grads, fd_grads)):

            # compare FD with analytical calculations
            if verbose: print "\nParameter {0}: {1}".format(i, fd_grad['name'])

            for idx, name in enumerate(["dX_dp", "dY_dp", "dDeltaPsi_dp"]):
                if verbose: print name
                a = fd_grad[name]
                b = an_grad[name]

                abs_error = a - b
                denom = a + b

                fns = five_number_summary(abs_error)
                if verbose:                    print ("  summary of absolute errors: %9.6f %9.6f %9.6f " + \
          "%9.6f %9.6f") % fns
                assert flex.max(flex.abs(abs_error)) < 0.0003
                # largest absolute error found to be about 0.00025 for dY/dp of
                # Crystal0g_param_3. Reject outlying absolute errors and test again.
                iqr = fns[3] - fns[1]

                # skip further stats on errors with an iqr of near zero, e.g. dDeltaPsi_dp
                # for detector parameters, which are all equal to zero
                if iqr < 1.e-10:
                    continue

                sel1 = abs_error < fns[3] + 1.5 * iqr
                sel2 = abs_error > fns[1] - 1.5 * iqr
                sel = sel1 & sel2
                tst = flex.max_index(flex.abs(abs_error.select(sel)))
                tst_val = abs_error.select(sel)[tst]
                n_outliers = sel.count(False)
                if verbose:                    print ("  {0} outliers rejected, leaving greatest " + \
          "absolute error: {1:9.6f}").format(n_outliers, tst_val)
                # largest absolute error now 0.000086 for dX/dp of Beam0Mu2
                assert abs(tst_val) < 0.00009

                # Completely skip parameters with FD gradients all zero (e.g. gradients of
                # DeltaPsi for detector parameters)
                sel1 = flex.abs(a) < 1.e-10
                if sel1.all_eq(True):
                    continue

                # otherwise calculate normalised errors, by dividing absolute errors by
                # the IQR (more stable than relative error calculation)
                norm_error = abs_error / iqr
                fns = five_number_summary(norm_error)
                if verbose:                    print ("  summary of normalised errors: %9.6f %9.6f %9.6f " + \
          "%9.6f %9.6f") % fns
                # largest normalised error found to be about 25.7 for dY/dp of
                # Crystal0g_param_3.
                try:
                    assert flex.max(flex.abs(norm_error)) < 30
                except AssertionError as e:
                    e.args += ("extreme normalised error value: {0}".format(
                        flex.max(flex.abs(norm_error))), )
                    raise e

                # Reject outlying normalised errors and test again
                iqr = fns[3] - fns[1]
                if iqr > 0.:
                    sel1 = norm_error < fns[3] + 1.5 * iqr
                    sel2 = norm_error > fns[1] - 1.5 * iqr
                    sel = sel1 & sel2
                    tst = flex.max_index(flex.abs(norm_error.select(sel)))
                    tst_val = norm_error.select(sel)[tst]
                    n_outliers = sel.count(False)

                    # most outliers found for for dY/dp of Crystal0g_param_3 (which had
                    # largest errors, so no surprise there).
                    try:
                        assert n_outliers < 250
                    except AssertionError as e:
                        e.args += ("too many outliers rejected: {0}".format(
                            n_outliers), )
                        raise e

                    if verbose:                        print ("  {0} outliers rejected, leaving greatest " + \
              "normalised error: {1:9.6f}").format(n_outliers, tst_val)
                    # largest normalied error now about -4. for dX/dp of Detector0Tau1
                    assert abs(
                        tst_val) < 4.5, 'should be about 4 not %s' % tst_val
        if verbose: print

        return