def make_error_model_plots(params, experiments): """Generate normal probability plot data.""" data = {} if experiments[0].scaling_model.error_model: em = experiments[0].scaling_model.error_model if em.filtered_Ih_table: table = em.filtered_Ih_table data["intensity"] = table.intensities sigmaprime = calc_sigmaprime(em.parameters, table) data["delta_hl"] = calc_deltahl(table, table.calc_nh(), sigmaprime) data["inv_scale"] = table.inverse_scale_factors data["sigma"] = sigmaprime * data["inv_scale"] data["binning_info"] = em.binner.binning_info em.clear_Ih_table() if params.weighting.error_model.basic.minimisation == "regression": x, y = calculate_regression_x_y(em.filtered_Ih_table) data["regression_x"] = x data["regression_y"] = y data["model_a"] = em.parameters[0] data["model_b"] = em.parameters[1] data["summary"] = str(em) d = {"error_model_plots": {}, "error_model_summary": "No error model applied"} if "delta_hl" in data: d["error_model_plots"].update(normal_probability_plot(data)) d["error_model_plots"].update( i_over_sig_i_vs_i_plot(data["intensity"], data["sigma"]) ) d["error_model_plots"].update(error_model_variance_plot(data)) if "regression_x" in data: d["error_model_plots"].update(error_regression_plot(data)) if "summary" in data: d["error_model_summary"] = data["summary"] return d
def make_error_model_plots(params, experiments): """Generate normal probability plot data.""" d = { "error_model_plots": {}, "error_model_summary": "No error model applied" } error_model_data = [] # a list of dicts of error model data if experiments[0].scaling_model.error_model: error_models = [e.scaling_model.error_model for e in experiments] unique_error_models = OrderedSet(error_models) if len(unique_error_models) == 1: d["error_model_summary"] = str(error_models[0]) else: d["error_model_summary"] = "" for i, e in enumerate(unique_error_models): indices = [ str(j + 1) for j, x in enumerate(error_models) if e is x ] d["error_model_summary"] += ( f"\nError model {i+1}, applied to sweeps {', '.join(indices)}:" + str(e)) for em in unique_error_models: if em.filtered_Ih_table: data_i = {} table = em.filtered_Ih_table data_i["intensity"] = table.intensities sigmaprime = calc_sigmaprime(em.parameters, table) data_i["delta_hl"] = calc_deltahl(table, table.calc_nh(), sigmaprime) data_i["inv_scale"] = table.inverse_scale_factors data_i["sigma"] = sigmaprime * data_i["inv_scale"] data_i["binning_info"] = em.binner.binning_info em.clear_Ih_table() if params.weighting.error_model.basic.minimisation == "regression": x, y = calculate_regression_x_y(em.filtered_Ih_table) data_i["regression_x"] = x data_i["regression_y"] = y data_i["model_a"] = em.parameters[0] data_i["model_b"] = em.parameters[1] error_model_data.append(data_i) if error_model_data: for i, emd in enumerate(error_model_data): d["error_model_plots"].update( normal_probability_plot(emd, label=i + 1)) d["error_model_plots"].update( i_over_sig_i_vs_i_plot( flumpy.from_numpy(emd["intensity"]), flumpy.from_numpy(emd["sigma"]), label=i + 1, )) d["error_model_plots"].update( error_model_variance_plot(emd, label=i + 1)) if "regression_x" in emd: d["error_model_plots"].update( error_regression_plot(emd, label=i + 1)) return d
def make_output(model, params): """Get relevant data from the model and make html report.""" if not (params.output.html or params.output.json): return data = {} table = model.filtered_Ih_table data["intensity"] = table.intensities sigmaprime = calc_sigmaprime(model.parameters, table) data["delta_hl"] = calc_deltahl(table, table.calc_nh(), sigmaprime) data["inv_scale"] = table.inverse_scale_factors data["sigma"] = sigmaprime * data["inv_scale"] data["binning_info"] = model.binner.binning_info d = {"error_model_plots": {}} d["error_model_plots"].update(normal_probability_plot(data)) d["error_model_plots"].update( i_over_sig_i_vs_i_plot(data["intensity"], data["sigma"]) ) d["error_model_plots"].update(error_model_variance_plot(data)) if params.basic.minimisation == "regression": x, y = calculate_regression_x_y(model.filtered_Ih_table) data["regression_x"] = x data["regression_y"] = y data["model_a"] = model.parameters[0] data["model_b"] = model.parameters[1] d["error_model_plots"].update(error_regression_plot(data)) if params.output.html: logger.info("Writing html report to: %s", params.output.html) loader = ChoiceLoader( [ PackageLoader("dials", "templates"), PackageLoader("dials", "static", encoding="utf-8"), ] ) env = Environment(loader=loader) template = env.get_template("simple_report.html") html = template.render( page_title="DIALS error model refinement report", panel_title="Error distribution plots", panel_id="error_model_plots", graphs=d["error_model_plots"], ) with open(params.output.html, "wb") as f: f.write(html.encode("utf-8", "xmlcharrefreplace")) if params.output.json: logger.info("Writing html report data to: %s", params.output.json) with open(params.output.json, "w") as outfile: json.dump(d, outfile)
def test_errormodel(large_reflection_table, test_sg): """Test the initialisation and methods of the error model.""" Ih_table = IhTable([large_reflection_table], test_sg, nblocks=1) block = Ih_table.blocked_data_list[0] params = generated_param() params.weighting.error_model.basic.n_bins = 2 params.weighting.error_model.basic.min_Ih = 1.0 em = BasicErrorModel em.min_reflections_required = 1 error_model = em(basic_params=params.weighting.error_model.basic) error_model.min_reflections_required = 1 error_model.configure_for_refinement(block) assert error_model.binner.summation_matrix[0, 1] == 1 assert error_model.binner.summation_matrix[1, 1] == 1 assert error_model.binner.summation_matrix[2, 0] == 1 assert error_model.binner.summation_matrix[3, 0] == 1 assert error_model.binner.summation_matrix[4, 0] == 1 assert error_model.binner.summation_matrix.non_zeroes == 5 assert list(error_model.binner.binning_info["refl_per_bin"]) == [3, 2] # Test calc sigmaprime x0 = 1.0 x1 = 0.1 sigmaprime = calc_sigmaprime([x0, x1], error_model.filtered_Ih_table) cal_sigpr = list( x0 * flex.sqrt(block.variances + flex.pow2(x1 * block.intensities)) / block.inverse_scale_factors) assert list(sigmaprime) == pytest.approx(cal_sigpr[4:7] + cal_sigpr[-2:]) # Test calc delta_hl sigmaprime = calc_sigmaprime([1.0, 0.0], error_model.filtered_Ih_table) # Reset # Calculate example for three elements, with intensities 1, 5 and 10 and # variances 1, 5 and 10 using he formula # delta_hl = math.sqrt(n_h - 1 / n_h) * (Ihl/ghl - Ih) / sigmaprime delta_hl = calc_deltahl( error_model.filtered_Ih_table, error_model.filtered_Ih_table.calc_nh(), sigmaprime, ) expected_deltas = [ (-3.0 / 2.0) * math.sqrt(2.0 / 3.0), (5.0 / 2.0) * math.sqrt(2.0 / 15.0), 5.0 * math.sqrt(2.0 / 30.0), -0.117647058824, 0.124783549621, ] assert list(delta_hl) == pytest.approx(expected_deltas)
def update(self, scaler): if scaler.error_model: if scaler.error_model.filtered_Ih_table: table = scaler.error_model.filtered_Ih_table self.data["intensity"] = table.intensities sigmaprime = calc_sigmaprime(scaler.error_model.parameters, table) self.data["delta_hl"] = calc_deltahl(table, table.calc_nh(), sigmaprime) self.data["inv_scale"] = table.inverse_scale_factors self.data["sigma"] = sigmaprime * self.data["inv_scale"] self.data["binning_info"] = scaler.error_model.binner.binning_info scaler.error_model.clear_Ih_table() if scaler.params.weighting.error_model.basic.minimisation == "regression": x, y = calculate_regression_x_y(scaler.error_model.filtered_Ih_table) self.data["regression_x"] = x self.data["regression_y"] = y self.data["model_a"] = scaler.error_model.parameters[0] self.data["model_b"] = scaler.error_model.parameters[1] self.data["summary"] = str(scaler.error_model)