コード例 #1
0
    def compute_threshold(self, image, mask):
        '''
    Compute the threshold.

    :param image: The image to process
    :param mask: The pixel mask on the image
    :returns: A boolean mask showing foreground/background pixels

    '''

        import libtbx
        params = self.params
        if params.spotfinder.threshold.dispersion.global_threshold is libtbx.Auto:
            params.spotfinder.threshold.dispersion.global_threshold \
              = int(estimate_global_threshold(image, mask))
            logger.info(
                "Setting global_threshold: %i" %
                (params.spotfinder.threshold.dispersion.global_threshold))

        from dials.algorithms.spot_finding.threshold import DispersionThresholdStrategy
        self._algorithm = DispersionThresholdStrategy(
            kernel_size=params.spotfinder.threshold.dispersion.kernel_size,
            gain=params.spotfinder.threshold.dispersion.gain,
            mask=params.spotfinder.lookup.mask,
            n_sigma_b=params.spotfinder.threshold.dispersion.sigma_background,
            n_sigma_s=params.spotfinder.threshold.dispersion.sigma_strong,
            min_count=params.spotfinder.threshold.dispersion.min_local,
            global_threshold=params.spotfinder.threshold.dispersion.
            global_threshold)

        return self._algorithm(image, mask)
コード例 #2
0
def main():
    args = sys.argv[1:]
    meta, data = args[0:2]

    with h5py.File(meta, "r") as f:
        mask = f["/mask"][()]
        bitmask = flex.int(mask) == 0

    thresholder = DispersionThresholdStrategy(gain=1)

    total = None
    with h5py.File(data, "r") as f:
        d_id = f["/data"].id
        nz, ny, nx = f["/data"].shape
        dt = f["/data"].dtype

        for j in range(nz):
            image = chunk_read_image(d_id, j)
            signal_pixels = thresholder(image, mask=mask)

            if total is None:
                total = signal_pixels.as_1d().as_int()
            else:
                total += signal_pixels.as_1d().as_int()

    hot_mask = total >= (nz // 2)
    hot_pixels = hot_mask.iselection()

    for h in hot_pixels:
        print("    mask[%d, %d] = 8" % (h % nx, h // nx))
コード例 #3
0
    def find_spots(self, min_spot_size=2, max_spot_size=100):
        """
        Find the strong spots on the image

        """
        from dials.algorithms.spot_finding.threshold import DispersionThresholdStrategy
        from dials.model.data import PixelList
        from dials.model.data import PixelListLabeller
        from dials.array_family import flex

        print("")
        print("-" * 80)
        print(" Finding strong spots")
        print("-" * 80)
        print("")

        # Instantiate the threshold function
        threshold = DispersionThresholdStrategy()

        # Get the raw data and image mask
        image = self.experiment.imageset.get_raw_data(0)[0]
        mask = self.experiment.imageset.get_mask(0)[0]

        # Threshold the image and create the pixel labeller
        threshold_mask = threshold(image, mask)
        pixel_labeller = PixelListLabeller()
        pixel_labeller.add(PixelList(0, image, threshold_mask))

        # Create the shoebox list from the pixel list
        creator = flex.PixelListShoeboxCreator(
            pixel_labeller,
            0,  # Panel number
            0,  # Z start
            True,  # 2D
            self.params.spot_finding.min_spot_size,  # Min Pixels
            self.params.spot_finding.max_spot_size,  # Max Pixels
            False,
        )  # Find hot pixels
        shoeboxes = creator.result()

        # Filter the list to remove large and small spots
        size = creator.spot_size()
        large = size > self.params.spot_finding.max_spot_size
        small = size < self.params.spot_finding.min_spot_size
        bad = large | small
        shoeboxes = shoeboxes.select(~bad)
        print("Discarding %d spots with < %d pixels" %
              (small.count(True), self.params.spot_finding.min_spot_size))
        print("Discarding %d spots with > %d pixels" %
              (large.count(True), self.params.spot_finding.max_spot_size))

        # Extract the strong spot information
        centroid = shoeboxes.centroid_valid()
        intensity = shoeboxes.summed_intensity()
        observed = flex.observation(shoeboxes.panels(), centroid, intensity)

        # Create the reflection list
        self.reflections = flex.reflection_table(observed, shoeboxes)
        print("Using %d strong spots" % len(self.reflections))
コード例 #4
0
ファイル: star_find.py プロジェクト: graeme-winter/astrotbx
def hot(greyscale_flex, params):
    '''Find hot pixels in the image (returns flex bool).'''
    from dials.algorithms.spot_finding.threshold import \
        DispersionThresholdStrategy
    from dials.array_family import flex

    thresholder = DispersionThresholdStrategy(gain=params.gain)
    mask = flex.bool(greyscale_flex.size(), True)
    mask.reshape(flex.grid(*greyscale_flex.focus()))

    threshold_mask = thresholder(greyscale_flex, mask=mask)

    return threshold_mask
コード例 #5
0
ファイル: header_read.py プロジェクト: dials/dials_scratch
def find_spots(image):
    from dials.algorithms.spot_finding.threshold import DispersionThresholdStrategy
    from dials.model.data import PixelList
    from dials.model.data import PixelListLabeller

    thresholder = DispersionThresholdStrategy(gain=1)
    mask = image.as_1d() >= 0  # flex.bool(image.size(), True)
    mask.reshape(flex.grid(*image.focus()))

    threshold_mask = thresholder(image, mask=mask)
    plist = PixelList(0, image, threshold_mask)

    pixel_labeller = PixelListLabeller()
    pixel_labeller.add(plist)

    creator = flex.PixelListShoeboxCreator(pixel_labeller, 0, 0, True, 2, 100,
                                           False)
    shoeboxes = creator.result()
    return shoeboxes
コード例 #6
0
def image_to_shoeboxes(image):
    """For a given image, find spots 2 - 100 pixels im size, assuming a gain
    of 1, return the list of spot shoeboxes. Also assumes valid intensities in
    range 0...N."""

    thresholder = DispersionThresholdStrategy(gain=1)

    mask = image.as_1d() >= 0
    mask.reshape(flex.grid(*image.focus()))

    threshold_mask = thresholder(image, mask=mask)
    plist = PixelList(0, image, threshold_mask)

    pixel_labeller = PixelListLabeller()
    pixel_labeller.add(plist)

    creator = flex.PixelListShoeboxCreator(pixel_labeller, 0, 0, True, 2, 100,
                                           False)
    shoeboxes = creator.result()
    return shoeboxes
コード例 #7
0
ファイル: star_find.py プロジェクト: graeme-winter/astrotbx
def find(greyscale_flex, params, mask=None):
    '''Find stars on input greyscale flex image.'''

    from dials.algorithms.spot_finding.threshold import \
        DispersionThresholdStrategy
    from dials.model.data import PixelList
    from dials.model.data import PixelListLabeller
    from dials.array_family import flex

    thresholder = DispersionThresholdStrategy(gain=params.gain)
    if not mask:
        mask = flex.bool(greyscale_flex.size(), True)
    mask.reshape(flex.grid(*greyscale_flex.focus()))

    threshold_mask = thresholder(greyscale_flex, mask=mask)
    plist = PixelList(0, greyscale_flex, threshold_mask)

    pixel_labeller = PixelListLabeller()
    pixel_labeller.add(plist)

    creator = flex.PixelListShoeboxCreator(pixel_labeller, 0, 0, True,
                                           params.min_size, params.max_size,
                                           False)
    shoeboxes = creator.result()

    # remove nonsense
    size = creator.spot_size()
    big = size > params.max_size
    small = size < params.min_size
    bad = big | small
    shoeboxes = shoeboxes.select(~bad)

    centroid = shoeboxes.centroid_valid()
    intensity = shoeboxes.summed_intensity()
    observed = flex.observation(shoeboxes.panels(), centroid, intensity)

    stars = flex.reflection_table(observed, shoeboxes)
    return stars