コード例 #1
0
    def __call__(self):
        """Run the script."""
        from dials.model.serialize import load, dump
        from dials.model.data import ReflectionList
        import cPickle as pickle
        from dials.algorithms.spot_prediction import ray_intersection

        # Load the reflection list
        print("Loading reflections from {0}".format(self.reflections_filename))
        rlist = pickle.load(open(self.reflections_filename, "r"))

        # Try to load the models
        print("Loading models from {0}".format(self.sweep_filename))

        sweep = load.sweep(open(self.sweep_filename, "r"))
        beam = sweep.get_beam()
        wavelength = beam.get_wavelength()
        detector = sweep.get_detector()

        # get the intersections
        observations = ray_intersection(detector, rlist)

        if len(observations) != len(rlist):
            print("WARNING: not all reflections intersect the detector")

            # Why is this? Dump out the unique reflections to explore
            unique = ReflectionList()
            for r in rlist:
                try:
                    obs = ray_intersection(detector, r)
                except RuntimeError:
                    unique.append(r)

            unique_filename = "unique.pickle"
            print("Those reflections that do not intersect have been saved"
                  " to {0}".format(unique_filename))
            pickle.dump(observations, open(unique_filename, "wb"),
                        pickle.HIGHEST_PROTOCOL)

        # update the centroid positions too
        for r in observations:
            r.centroid_position = r.image_coord_mm + (r.rotation_angle, )

        # Write out reflections
        if self.output_filename is not None:

            print("Saving reflections to {0}".format(self.output_filename))
            pickle.dump(observations, open(self.output_filename, "wb"),
                        pickle.HIGHEST_PROTOCOL)
コード例 #2
0
  def __call__(self):
    """Run the script."""
    from dials.model.serialize import load, dump
    from dials.model.data import ReflectionList
    import cPickle as pickle
    from dials.algorithms.spot_prediction import ray_intersection

    # Load the reflection list
    print 'Loading reflections from {0}'.format(self.reflections_filename)
    rlist = pickle.load(open(self.reflections_filename, 'r'))

    # Try to load the models
    print 'Loading models from {0}'.format(self.sweep_filename)

    sweep = load.sweep(open(self.sweep_filename, 'r'))
    beam = sweep.get_beam()
    wavelength = beam.get_wavelength()
    detector = sweep.get_detector()

    # get the intersections
    observations = ray_intersection(detector, rlist)

    if len(observations) != len(rlist):
      print "WARNING: not all reflections intersect the detector"

      # Why is this? Dump out the unique reflections to explore
      unique = ReflectionList()
      for r in rlist:
        try:
          obs = ray_intersection(detector, r)
        except RuntimeError:
          unique.append(r)

      unique_filename = "unique.pickle"
      print 'Those reflections that do not intersect have been saved' \
            ' to {0}'.format(unique_filename)
      pickle.dump(observations, open(unique_filename, 'wb'),
          pickle.HIGHEST_PROTOCOL)

    # update the centroid positions too
    for r in observations:
      r.centroid_position = r.image_coord_mm + (r.rotation_angle, )

    # Write out reflections
    if self.output_filename is not None:

      print 'Saving reflections to {0}'.format(self.output_filename)
      pickle.dump(observations, open(self.output_filename, 'wb'),
          pickle.HIGHEST_PROTOCOL)
コード例 #3
0
def get_rmsds_obs_pred(observations, experiment):
    from dials.algorithms.spot_prediction import ray_intersection
    from dials.algorithms.indexing.indexer import master_params
    from dials.algorithms.refinement import RefinerFactory
    from dxtbx.model.experiment.experiment_list import ExperimentList

    master_params.refinement.reflections.close_to_spindle_cutoff = 0.001
    from dials.model.data import ReflectionList

    ref_list = ReflectionList.from_table(observations)
    ref_list = ray_intersection(experiment.detector, ref_list)
    ref_table = ref_list.to_table()
    import copy

    reflections = copy.deepcopy(observations)
    reflections["xyzcal.mm"] = ref_table["xyzcal.mm"]
    reflections["xyzcal.px"] = ref_table["xyzcal.px"]

    # XXX hack to make it work for a single lattice
    reflections["id"] = flex.int(len(reflections), 0)
    refine = RefinerFactory.from_parameters_data_experiments(master_params,
                                                             reflections,
                                                             ExperimentList(
                                                                 [experiment]),
                                                             verbosity=0)
    return refine.rmsds()
コード例 #4
0
def ref_gen_static(experiments):
    """Generate some reflections using the static predictor"""

    beam = experiments[0].beam
    crystal = experiments[0].crystal
    detector = experiments[0].detector
    scan = experiments[0].scan

    # All indices to the detector max resolution
    dmin = detector.get_max_resolution(beam.get_s0())
    index_generator = IndexGenerator(
        crystal.get_unit_cell(), space_group(space_group_symbols(1).hall()).type(), dmin
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    sequence_range = scan.get_oscillation_range(deg=False)
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(detector, refs)
    refs = refs.select(intersects)

    # Make a reflection predictor and re-predict for these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    refs["id"] = flex.int(len(refs), 0)
    refs = ref_predictor(refs)

    return refs
コード例 #5
0
ファイル: tools.py プロジェクト: dials/dials_scratch
def determine_miller_ring_sectors(detector, goniometer, s0, hkl_flex,
                                  crystal_A):
    crystal_R = matrix.sqr(goniometer.get_fixed_rotation())
    rotation_axis = goniometer.get_rotation_axis()

    from dials.algorithms.spot_prediction import ScanStaticRayPredictor
    from dials.algorithms.spot_prediction import ray_intersection
    from math import radians

    PRACTICALLY_INFINITY_BUT_DEFINITELY_LARGER_THAN_2PI = 1000
    oscillation = (
        -PRACTICALLY_INFINITY_BUT_DEFINITELY_LARGER_THAN_2PI,
        PRACTICALLY_INFINITY_BUT_DEFINITELY_LARGER_THAN_2PI,
    )
    rays = ScanStaticRayPredictor(s0, rotation_axis,
                                  oscillation)(hkl_flex, crystal_R * crystal_A)
    # ray_intersection could probably be sped up by an is_on_detector() method
    rays = rays.select(ray_intersection(detector, rays))

    divider = radians(10)

    ray_sectors = []
    for s in range(0, 36):
        ray_sectors.append([])
    for (p, m) in zip(rays["phi"], rays["miller_index"]):
        ray_sectors[int(p / divider)].append(m)
    return ray_sectors
コード例 #6
0
def ref_gen_static(experiments):
  """Generate some reflections using the static predictor"""

  beam = experiments[0].beam
  crystal = experiments[0].crystal
  goniometer = experiments[0].goniometer
  detector = experiments[0].detector
  scan = experiments[0].scan

  # All indices to the detector max resolution
  dmin = detector.get_max_resolution(beam.get_s0())
  index_generator = IndexGenerator(crystal.get_unit_cell(),
                  space_group(space_group_symbols(1).hall()).type(), dmin)
  indices = index_generator.to_array()

  # Predict rays within the sweep range
  sweep_range = scan.get_oscillation_range(deg=False)
  ray_predictor = ScansRayPredictor(experiments, sweep_range)
  refs = ray_predictor(indices)

  # Take only those rays that intersect the detector
  intersects = ray_intersection(detector, refs)
  refs = refs.select(intersects)

  # Make a reflection predictor and re-predict for these reflections. The
  # result is the same, but we gain also the flags and xyzcal.px columns
  ref_predictor = ExperimentsPredictor(experiments)
  refs['id'] = flex.int(len(refs), 0)
  refs = ref_predictor(refs)

  return refs
コード例 #7
0
    def generate_reflections(self):
        from cctbx.sgtbx import space_group, space_group_symbols

        from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection

        sequence_range = self.scan.get_oscillation_range(deg=False)
        resolution = 2.0
        index_generator = IndexGenerator(
            self.crystal.get_unit_cell(),
            space_group(space_group_symbols(1).hall()).type(),
            resolution,
        )
        indices = index_generator.to_array()

        # Predict rays within the sequence range
        ray_predictor = ScansRayPredictor(self.experiments, sequence_range)
        obs_refs = ray_predictor(indices)

        # Take only those rays that intersect the detector
        intersects = ray_intersection(self.detector, obs_refs)
        obs_refs = obs_refs.select(intersects)

        # Re-predict using the Experiments predictor for all these reflections. The
        # result is the same, but we gain also the flags and xyzcal.px columns
        obs_refs["id"] = flex.int(len(obs_refs), 0)
        obs_refs = self.ref_predictor(obs_refs)

        # Set 'observed' centroids from the predicted ones
        obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

        # Invent some variances for the centroid positions of the simulated data
        im_width = 0.1 * pi / 180.0
        px_size = self.detector[0].get_pixel_size()
        var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
        var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
        var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
        obs_refs["xyzobs.mm.variance"] = flex.vec3_double(
            var_x, var_y, var_phi)

        # set the flex random seed to an 'uninteresting' number
        flex.set_random_seed(12407)

        # take 10 random reflections for speed
        reflections = obs_refs.select(flex.random_selection(len(obs_refs), 10))

        # use a BlockCalculator to calculate the blocks per image
        from dials.algorithms.refinement.reflection_manager import BlockCalculator

        block_calculator = BlockCalculator(self.experiments, reflections)
        reflections = block_calculator.per_image()

        return reflections
コード例 #8
0
def generate_reflections(experiments):

    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols
    from scitbx.array_family import flex

    detector = experiments[0].detector
    crystal = experiments[0].crystal

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    scan = experiments[0].scan
    sequence_range = scan.get_oscillation_range(deg=False)
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(detector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    return obs_refs, ref_predictor
コード例 #9
0
    def predict(self):
        """perform reflection prediction and update the reflection manager"""

        if self._first_predict:
            self._first_predict = False
            super(LeastSquaresStillsDetector, self).predict()

            # HACK TO PUT IN A PHI COLUMN, WHICH RAY_INTERSECTION EXPECTS
            reflections = self._reflection_manager.get_obs()
            reflections['phi'] = flex.double(len(reflections), 0)
            return
        else:

            # update the reflection_predictor with the scan-independent part of the
            # current geometry
            #self._reflection_predictor.update()

            # reset the 'use' flag for all observations
            #self._reflection_manager.reset_accepted_reflections()

            # do prediction (updates reflection table in situ).
            reflections = self._reflection_manager.get_obs()
            #self._reflection_predictor.predict(reflections)
            # FIXME HACK TO GET THE DETECTOR FROM THE FIRST EXPERIMENT
            detector = self._reflection_predictor._experiments[0].detector
            success = ray_intersection(detector, reflections,
                                       reflections['panel'])
            assert success.all_eq(True)

            x_obs, y_obs, _ = reflections['xyzobs.mm.value'].parts()
            delpsi = reflections['delpsical.rad']
            x_calc, y_calc, _ = reflections['xyzcal.mm'].parts()

            # calculate residuals and assign columns
            reflections['x_resid'] = x_calc - x_obs
            reflections['x_resid2'] = reflections['x_resid']**2
            reflections['y_resid'] = y_calc - y_obs
            reflections['y_resid2'] = reflections['y_resid']**2
            reflections['delpsical2'] = reflections['delpsical.rad']**2

            # set used_in_refinement flag to all those that had predictions
            #mask = reflections.get_flags(reflections.flags.predicted)
            #reflections.set_flags(mask, reflections.flags.used_in_refinement)

            # collect the matches
            self.update_matches(force=True)

        return
コード例 #10
0
  def predict(self):
    """perform reflection prediction and update the reflection manager"""

    if self._first_predict:
      self._first_predict = False
      super(LeastSquaresStillsDetector, self).predict()

      # HACK TO PUT IN A PHI COLUMN, WHICH RAY_INTERSECTION EXPECTS
      reflections = self._reflection_manager.get_obs()
      reflections['phi'] = flex.double(len(reflections), 0)
      return
    else:

      # update the reflection_predictor with the scan-independent part of the
      # current geometry
      #self._reflection_predictor.update()

      # reset the 'use' flag for all observations
      #self._reflection_manager.reset_accepted_reflections()

      # do prediction (updates reflection table in situ).
      reflections = self._reflection_manager.get_obs()
      #self._reflection_predictor.predict(reflections)
      # FIXME HACK TO GET THE DETECTOR FROM THE FIRST EXPERIMENT
      detector = self._reflection_predictor._experiments[0].detector
      success = ray_intersection(detector, reflections, reflections['panel'])
      assert success.all_eq(True)

      x_obs, y_obs, _ = reflections['xyzobs.mm.value'].parts()
      delpsi = reflections['delpsical.rad']
      x_calc, y_calc, _ = reflections['xyzcal.mm'].parts()

      # calculate residuals and assign columns
      reflections['x_resid'] = x_calc - x_obs
      reflections['x_resid2'] = reflections['x_resid']**2
      reflections['y_resid'] = y_calc - y_obs
      reflections['y_resid2'] = reflections['y_resid']**2
      reflections['delpsical2'] = reflections['delpsical.rad']**2

      # set used_in_refinement flag to all those that had predictions
      #mask = reflections.get_flags(reflections.flags.predicted)
      #reflections.set_flags(mask, reflections.flags.used_in_refinement)

      # collect the matches
      self.update_matches(force=True)

    return
コード例 #11
0
def generate_reflections(experiments):

  from dials.algorithms.spot_prediction import IndexGenerator
  from dials.algorithms.refinement.prediction import \
    ScansRayPredictor, ExperimentsPredictor
  from dials.algorithms.spot_prediction import ray_intersection
  from cctbx.sgtbx import space_group, space_group_symbols
  from scitbx.array_family import flex

  detector = experiments[0].detector
  crystal = experiments[0].crystal

  # All indices in a 2.0 Angstrom sphere
  resolution = 2.0
  index_generator = IndexGenerator(crystal.get_unit_cell(),
                  space_group(space_group_symbols(1).hall()).type(), resolution)
  indices = index_generator.to_array()

  # Predict rays within the sweep range
  scan = experiments[0].scan
  sweep_range = scan.get_oscillation_range(deg=False)
  ray_predictor = ScansRayPredictor(experiments, sweep_range)
  obs_refs = ray_predictor(indices)

  # Take only those rays that intersect the detector
  intersects = ray_intersection(detector, obs_refs)
  obs_refs = obs_refs.select(intersects)

  # Make a reflection predictor and re-predict for all these reflections. The
  # result is the same, but we gain also the flags and xyzcal.px columns
  ref_predictor = ExperimentsPredictor(experiments)
  obs_refs['id'] = flex.int(len(obs_refs), 0)
  obs_refs = ref_predictor(obs_refs)

  # Set 'observed' centroids from the predicted ones
  obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']

  # Invent some variances for the centroid positions of the simulated data
  im_width = 0.1 * pi / 180.
  px_size = detector[0].get_pixel_size()
  var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
  var_y = flex.double(len(obs_refs), (px_size[1] / 2.)**2)
  var_phi = flex.double(len(obs_refs), (im_width / 2.)**2)
  obs_refs['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

  return obs_refs, ref_predictor
コード例 #12
0
  def generate_reflections(self):
    sweep_range = self.scan.get_oscillation_range(deg=False)
    resolution = 2.0
    index_generator = IndexGenerator(self.crystal.get_unit_cell(),
                          space_group(space_group_symbols(1).hall()).type(),
                          resolution)
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(self.experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(self.detector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Re-predict using the Experiments predictor for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    obs_refs['id'] = flex.int(len(obs_refs), 0)
    obs_refs = self.ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.
    px_size = self.detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.)**2)
    obs_refs['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

    # set the flex random seed to an 'uninteresting' number
    flex.set_random_seed(12407)

    # take 5 random reflections for speed
    reflections = obs_refs.select(flex.random_selection(len(obs_refs), 5))

    # use a BlockCalculator to calculate the blocks per image
    from dials.algorithms.refinement.reflection_manager import BlockCalculator
    block_calculator = BlockCalculator(self.experiments, reflections)
    reflections = block_calculator.per_image()

    return reflections
コード例 #13
0
def generate_reflections(experiments):

    from cctbx.sgtbx import space_group, space_group_symbols

    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansExperimentsPredictor,
        ScansRayPredictor,
    )
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection

    detector = experiments[0].detector
    crystal = experiments[0].crystal

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    scan = experiments[0].scan
    sequence_range = scan.get_oscillation_range(deg=False)
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(detector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    return obs_refs
コード例 #14
0
def get_rmsds_obs_pred(observations, experiment):
  from dials.algorithms.spot_prediction import ray_intersection
  from dials.algorithms.indexing.indexer import master_params
  from dials.algorithms.refinement import RefinerFactory
  from dxtbx.model.experiment.experiment_list import ExperimentList
  master_params.refinement.reflections.close_to_spindle_cutoff = 0.001
  from dials.model.data import ReflectionList
  ref_list = ReflectionList.from_table(observations)
  ref_list = ray_intersection(experiment.detector, ref_list)
  ref_table = ref_list.to_table()
  import copy
  reflections = copy.deepcopy(observations)
  reflections['xyzcal.mm'] = ref_table['xyzcal.mm']
  reflections['xyzcal.px'] = ref_table['xyzcal.px']

  # XXX hack to make it work for a single lattice
  reflections['id'] = flex.int(len(reflections), 0)
  refine = RefinerFactory.from_parameters_data_experiments(
    master_params, reflections, ExperimentList([experiment]), verbosity=0)
  return refine.rmsds()
コード例 #15
0
ファイル: tools.py プロジェクト: dials/dials_scratch
def determine_miller_ring_sectors(detector, goniometer, s0, hkl_flex, crystal_A):
  crystal_R = matrix.sqr(goniometer.get_fixed_rotation())
  rotation_axis = goniometer.get_rotation_axis()

  from dials.algorithms.spot_prediction import ScanStaticRayPredictor
  from dials.algorithms.spot_prediction import ray_intersection
  from math import radians

  PRACTICALLY_INFINITY_BUT_DEFINITELY_LARGER_THAN_2PI = 1000
  oscillation = (-PRACTICALLY_INFINITY_BUT_DEFINITELY_LARGER_THAN_2PI, PRACTICALLY_INFINITY_BUT_DEFINITELY_LARGER_THAN_2PI)
  rays = ScanStaticRayPredictor(s0, rotation_axis, oscillation)(hkl_flex, crystal_R * crystal_A)
  # ray_intersection could probably be sped up by an is_on_detector() method
  rays = rays.select(ray_intersection(detector, rays))

  divider = radians(10)

  ray_sectors = []
  for s in range(0, 36):
    ray_sectors.append([])
  for (p, m) in zip(rays['phi'], rays['miller_index']):
    ray_sectors[int(p / divider)].append(m)
  return ray_sectors
コード例 #16
0
def test():
    from cctbx.sgtbx import space_group, space_group_symbols
    from dxtbx.model.experiment_list import Experiment, ExperimentList
    from libtbx.phil import parse
    from scitbx.array_family import flex

    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.goniometer_parameters import (
        GoniometerParameterisation, )

    #### Import model parameterisations
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansExperimentsPredictor,
        ScansRayPredictor,
    )

    ##### Imports for reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection

    ##### Import model builder
    from dials.tests.algorithms.refinement.setup_geometry import Extract

    #### Create models

    overrides = """geometry.parameters.crystal.a.length.range = 10 50
  geometry.parameters.crystal.b.length.range = 10 50
  geometry.parameters.crystal.c.length.range = 10 50"""

    master_phil = parse(
        """
      include scope dials.tests.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 72 degree sequence
    sequence_range = (0.0, math.pi / 5.0)
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 720),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(720)),
        deg=True,
    )

    #### Create parameterisations of these models
    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)
    gon_param = GoniometerParameterisation(mygonio, mybeam)

    # Create an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    #### Unit tests

    # Build a prediction parameterisation
    pred_param = XYPhiPredictionParameterisation(
        experiments,
        detector_parameterisations=[det_param],
        beam_parameterisations=[s0_param],
        xl_orientation_parameterisations=[xlo_param],
        xl_unit_cell_parameterisations=[xluc_param],
        goniometer_parameterisations=[gon_param],
    )

    # Generate reflections
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * math.pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # use a ReflectionManager to exclude reflections too close to the spindle
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    refman = ReflectionManager(obs_refs, experiments, outlier_detector=None)
    refman.finalise()

    # Redefine the reflection predictor to use the type expected by the Target class
    ref_predictor = ScansExperimentsPredictor(experiments)

    # keep only those reflections that pass inclusion criteria and have predictions
    reflections = refman.get_matches()

    # get analytical gradients
    an_grads = pred_param.get_gradients(reflections)

    # get finite difference gradients
    p_vals = pred_param.get_param_vals()
    deltas = [1.0e-7] * len(p_vals)

    for i, delta in enumerate(deltas):
        val = p_vals[i]

        p_vals[i] -= delta / 2.0
        pred_param.set_param_vals(p_vals)

        ref_predictor(reflections)

        rev_state = reflections["xyzcal.mm"].deep_copy()

        p_vals[i] += delta
        pred_param.set_param_vals(p_vals)

        ref_predictor(reflections)

        fwd_state = reflections["xyzcal.mm"].deep_copy()
        p_vals[i] = val

        fd = fwd_state - rev_state
        x_grads, y_grads, phi_grads = fd.parts()
        x_grads /= delta
        y_grads /= delta
        phi_grads /= delta

        # compare with analytical calculation
        assert x_grads == pytest.approx(an_grads[i]["dX_dp"], abs=5.0e-6)
        assert y_grads == pytest.approx(an_grads[i]["dY_dp"], abs=5.5e-6)
        assert phi_grads == pytest.approx(an_grads[i]["dphi_dp"], abs=5.0e-6)

    # return to the initial state
    pred_param.set_param_vals(p_vals)
コード例 #17
0
    def __init__(self):
        from dials.algorithms.spot_prediction import IndexGenerator
        from dials.algorithms.spot_prediction import ScanStaticRayPredictor
        from dials.algorithms.spot_prediction import ray_intersection
        from iotbx.xds import xparm, integrate_hkl
        from dials.util import ioutil
        from math import ceil
        import dxtbx
        from rstbx.cftbx.coordinate_frame_converter import \
            coordinate_frame_converter
        from scitbx import matrix

        # The XDS files to read from
        integrate_filename = join(dials_regression,
                                  'data/sim_mx/INTEGRATE.HKL')
        gxparm_filename = join(dials_regression, 'data/sim_mx/GXPARM.XDS')

        # Read the XDS files
        self.integrate_handle = integrate_hkl.reader()
        self.integrate_handle.read_file(integrate_filename)
        self.gxparm_handle = xparm.reader()
        self.gxparm_handle.read_file(gxparm_filename)

        # Get the parameters we need from the GXPARM file
        models = dxtbx.load(gxparm_filename)
        self.beam = models.get_beam()
        self.gonio = models.get_goniometer()
        self.detector = models.get_detector()
        self.scan = models.get_scan()

        assert (len(self.detector) == 1)

        #print self.detector

        # Get crystal parameters
        self.space_group_type = ioutil.get_space_group_type_from_xparm(
            self.gxparm_handle)
        cfc = coordinate_frame_converter(gxparm_filename)
        a_vec = cfc.get('real_space_a')
        b_vec = cfc.get('real_space_b')
        c_vec = cfc.get('real_space_c')
        self.unit_cell = cfc.get_unit_cell()
        self.ub_matrix = matrix.sqr(a_vec + b_vec + c_vec).inverse()

        # Get the minimum resolution in the integrate file
        self.d_min = self.detector[0].get_max_resolution_at_corners(
            self.beam.get_s0())

        # Get the number of frames from the max z value
        xcal, ycal, zcal = zip(*self.integrate_handle.xyzcal)
        self.scan.set_image_range(
            (self.scan.get_image_range()[0],
             self.scan.get_image_range()[0] + int(ceil(max(zcal)))))

        # Create the index generator
        generate_indices = IndexGenerator(self.unit_cell,
                                          self.space_group_type, self.d_min)

        s0 = self.beam.get_s0()
        m2 = self.gonio.get_rotation_axis()
        fixed_rotation = self.gonio.get_fixed_rotation()
        setting_rotation = self.gonio.get_setting_rotation()
        UB = self.ub_matrix
        dphi = self.scan.get_oscillation_range(deg=False)

        # Create the ray predictor
        self.predict_rays = ScanStaticRayPredictor(s0, m2, fixed_rotation,
                                                   setting_rotation, dphi)

        # Predict the spot locations
        self.reflections = self.predict_rays(generate_indices.to_array(), UB)

        # Calculate the intersection of the detector and reflection frames
        success = ray_intersection(self.detector, self.reflections)
        self.reflections.select(success)
コード例 #18
0
index_generator = IndexGenerator(
    mycrystal.get_unit_cell(),
    space_group(space_group_symbols(1).hall()).type(), resolution)
indices = index_generator.to_array()

sweep_range = myscan.get_oscillation_range(deg=False)
im_width = myscan.get_oscillation(deg=False)[1]
assert sweep_range == (0., pi)
assert approx_equal(im_width, 0.1 * pi / 180.)

# Predict rays within the sweep range
ray_predictor = ScansRayPredictor(experiments, sweep_range)
obs_refs = ray_predictor(indices)

# Take only those rays that intersect the detector
intersects = ray_intersection(mydetector, obs_refs)
obs_refs = obs_refs.select(intersects)

# Make a reflection predictor and re-predict for all these reflections. The
# result is the same, but we gain also the flags and xyzcal.px columns
ref_predictor = ExperimentsPredictor(experiments)
obs_refs['id'] = flex.int(len(obs_refs), 0)
obs_refs = ref_predictor(obs_refs)

# Set 'observed' centroids from the predicted ones
obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']

# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.
px_size = mydetector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
コード例 #19
0
  index_generator = IndexGenerator(mycrystal.get_unit_cell(),
                  space_group(space_group_symbols(1).hall()).type(), resolution)
  indices = index_generator.to_array()

  # for the reflection predictor, it doesn't matter which experiment list is
  # passed, as the detector is not used
  ref_predictor = ScansRayPredictor(experiments_single_panel, sweep_range)

  # get two sets of identical reflections
  obs_refs = ref_predictor(indices)
  obs_refs2 = ref_predictor(indices)
  for r1, r2 in zip(obs_refs, obs_refs2):
    assert r1['s1'] == r2['s1']

  # get the panel intersections
  sel = ray_intersection(single_panel_detector, obs_refs)
  obs_refs = obs_refs.select(sel)
  sel = ray_intersection(multi_panel_detector, obs_refs2)
  obs_refs2 = obs_refs2.select(sel)
  assert len(obs_refs) == len(obs_refs2)

  # Set 'observed' centroids from the predicted ones
  obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']
  obs_refs2['xyzobs.mm.value'] = obs_refs2['xyzcal.mm']

  # Invent some variances for the centroid positions of the simulated data
  im_width = 0.1 * pi / 180.
  px_size = single_panel_detector[0].get_pixel_size()
  var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
  var_y = flex.double(len(obs_refs), (px_size[1] / 2.)**2)
  var_phi = flex.double(len(obs_refs), (im_width / 2.)**2)
コード例 #20
0
def test(args=[]):

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
        include scope dials.tests.algorithms.refinement.geometry_phil
        include scope dials.tests.algorithms.refinement.minimiser_phil
        """,
        process_includes=True,
    )

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1",
    )

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2",
    )

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for an 18 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 180),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(180)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi / 10)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal1,
            imageset=None,
        ))
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=crystal2,
            imageset=None,
        ))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2.0, 2.0, 2.0])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.5 Angstrom sphere for crystal1
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices1 = index_generator.to_array()

    # All indices in a 2.5 Angstrom sphere for crystal2
    resolution = 2.5
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices2 = index_generator.to_array()

    # Predict rays within the sequence range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1["id"] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices2, experiment_id=1)
    obs_refs2["id"] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1["xyzobs.mm.value"] = obs_refs1["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 18.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.0)**2)
    obs_refs1["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.0)**2)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    # scan static first
    params = phil_scope.fetch(source=parse("")).extract()
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs, experiments)
    refiner.run()

    # Ensure all models have scan-varying state set
    # (https://github.com/dials/dials/issues/798)
    refined_experiments = refiner.get_experiments()
    sp = [xl.get_num_scan_points() for xl in refined_experiments.crystals()]

    assert sp.count(181) == 2
コード例 #21
0
ファイル: test_finite_diffs.py プロジェクト: hattne/dials
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    import random
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Experimental model builder
    from dials.test.algorithms.refinement.setup_geometry import Extract

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    # Local functions
    def random_direction_close_to(vector, sd=0.5):
        return vector.rotate_around_origin(
            matrix.col((random.random(), random.random(),
                        random.random())).normalize(),
            random.gauss(0, sd),
            deg=True,
        )

    #############################
    # Setup experimental models #
    #############################

    # make a small cell to speed up calculations
    overrides = """geometry.parameters.crystal.a.length.range = 10 15
  geometry.parameters.crystal.b.length.range = 10 15
  geometry.parameters.crystal.c.length.range = 10 15"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    models = Extract(master_phil, overrides, cmdline_args=args)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep of 0.1 degree images
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 0.2 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in one axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)
    p_vals[1] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments)

    ##############################
    # Set up the target function #
    ##############################

    # Redefine the reflection predictor to use the type expected by the Target class
    ref_predictor = ScansExperimentsPredictor(experiments)

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    # get the functional and gradients
    mytarget.predict()
    L, dL_dp, curvs = mytarget.compute_functional_gradients_and_curvatures()

    ####################################
    # Do FD calculation for comparison #
    ####################################

    # function for calculating finite difference gradients of the target function
    def get_fd_gradients(target, pred_param, deltas):
        """Calculate centered finite difference gradients for each of the
        parameters of the target function.

        "deltas" must be a sequence of the same length as the parameter list, and
        contains the step size for the difference calculations for each parameter.
        """

        p_vals = pred_param.get_param_vals()
        assert len(deltas) == len(p_vals)
        fd_grad = []
        fd_curvs = []

        for i in range(len(deltas)):
            val = p_vals[i]

            p_vals[i] -= deltas[i] / 2.0
            pred_param.set_param_vals(p_vals)
            target.predict()

            rev_state = target.compute_functional_gradients_and_curvatures()

            p_vals[i] += deltas[i]
            pred_param.set_param_vals(p_vals)

            target.predict()

            fwd_state = target.compute_functional_gradients_and_curvatures()

            # finite difference estimation of first derivatives
            fd_grad.append((fwd_state[0] - rev_state[0]) / deltas[i])

            # finite difference estimation of curvatures, using the analytical
            # first derivatives
            fd_curvs.append((fwd_state[1][i] - rev_state[1][i]) / deltas[i])

            # set parameter back to centred value
            p_vals[i] = val

        # return to the initial state
        pred_param.set_param_vals(p_vals)

        return fd_grad, fd_curvs

    # test normalised differences between FD and analytical calculations
    fdgrads = get_fd_gradients(mytarget, pred_param,
                               [1.0e-7] * len(pred_param))
    diffs = [a - b for a, b in zip(dL_dp, fdgrads[0])]
    norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[0])])
    for e in norm_diffs:
        assert abs(e) < 0.001  # check differences less than 0.1%

    # test normalised differences between FD curvatures and analytical least
    # squares approximation. We don't expect this to be especially close
    if curvs:
        diffs = [a - b for a, b in zip(curvs, fdgrads[1])]
        norm_diffs = tuple([a / b for a, b in zip(diffs, fdgrads[1])])
        for e in norm_diffs:
            assert abs(e) < 0.1  # check differences less than 10%
コード例 #22
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import \
        DetectorParameterisationSinglePanel
    from dials.algorithms.refinement.parameterisation.beam_parameters import \
        BeamParameterisation
    from dials.algorithms.refinement.parameterisation.crystal_parameters import \
        CrystalOrientationParameterisation, CrystalUnitCellParameterisation

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import \
        symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction import ScansRayPredictor, \
      ExperimentsPredictor
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import \
        XYPhiPredictionParameterisation # implicit import

    # Imports for the target function
    from dials.algorithms.refinement.target import \
        LeastSquaresPositionalResidualWithRmsdCutoff # implicit import

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse("""
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
                        process_includes=True)

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 1")

    crystal1 = models.crystal

    models = setup_geometry.Extract(
        master_phil,
        cmdline_args=args,
        local_overrides="geometry.parameters.random_seed = 2")

    mydetector = models.detector
    mygonio = models.goniometer
    crystal2 = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(image_range=(1, 1800),
                          exposure_times=0.1,
                          oscillation=(0, 0.1),
                          epochs=range(1800),
                          deg=True)
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0., pi)
    assert approx_equal(im_width, 0.1 * pi / 180.)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal1,
                   imageset=None))
    experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   goniometer=mygonio,
                   scan=myscan,
                   crystal=crystal2,
                   imageset=None))

    assert len(experiments.detectors()) == 1

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xl1o_param = CrystalOrientationParameterisation(crystal1)
    xl1uc_param = CrystalUnitCellParameterisation(crystal1)
    xl2o_param = CrystalOrientationParameterisation(crystal2)
    xl2uc_param = CrystalUnitCellParameterisation(crystal2)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    #xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    #pred_param = XYPhiPredictionParameterisation(experiments,
    #  [det_param], [s0_param], [xlo_param], [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2., 2., 2.])]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = []
    for xlo in (xl1o_param, xl2o_param):
        p_vals = xlo.get_param_vals()
        xlo_p_vals.append(p_vals)
        new_p_vals = [a + b for a, b in zip(p_vals, [2., 2., 2.])]
        xlo.set_param_vals(new_p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = []
    for xluc, xl in ((xl1uc_param, crystal1), ((xl2uc_param, crystal2))):
        p_vals = xluc.get_param_vals()
        xluc_p_vals.append(p_vals)
        cell_params = xl.get_unit_cell().parameters()
        cell_params = [
            a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
        ]
        new_uc = unit_cell(cell_params)
        newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
        S = symmetrize_reduce_enlarge(xl.get_space_group())
        S.set_orientation(orientation=newB)
        X = tuple([e * 1.e5 for e in S.forward_independent_parameters()])
        xluc.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    #print "Reflections will be generated with the following geometry:"
    #print mybeam
    #print mydetector
    #print crystal1
    #print crystal2

    # All indices in a 2.0 Angstrom sphere for crystal1
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal1.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices1 = index_generator.to_array()

    # All indices in a 2.0 Angstrom sphere for crystal2
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal2.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(), resolution)
    indices2 = index_generator.to_array()

    # Predict rays within the sweep range. Set experiment IDs
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs1 = ray_predictor(indices1, experiment_id=0)
    obs_refs1['id'] = flex.int(len(obs_refs1), 0)
    obs_refs2 = ray_predictor(indices1, experiment_id=1)
    obs_refs2['id'] = flex.int(len(obs_refs2), 1)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs1)
    obs_refs1 = obs_refs1.select(intersects)
    intersects = ray_intersection(mydetector, obs_refs2)
    obs_refs2 = obs_refs2.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs1 = ref_predictor(obs_refs1)
    obs_refs2 = ref_predictor(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs1['xyzobs.mm.value'] = obs_refs1['xyzcal.mm']
    obs_refs2['xyzobs.mm.value'] = obs_refs2['xyzcal.mm']

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs1), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs1), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs1), (im_width / 2.)**2)
    obs_refs1['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)
    var_x = flex.double(len(obs_refs2), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs2), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs2), (im_width / 2.)**2)
    obs_refs2['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

    #print "Total number of reflections excited for crystal1", len(obs_refs1)
    #print "Total number of reflections excited for crystal2", len(obs_refs2)

    # concatenate reflection lists
    obs_refs1.extend(obs_refs2)
    obs_refs = obs_refs1

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xl1o_param.set_param_vals(xlo_p_vals[0])
    xl2o_param.set_param_vals(xlo_p_vals[1])
    xl1uc_param.set_param_vals(xluc_p_vals[0])
    xl2uc_param.set_param_vals(xluc_p_vals[1])

    #print "Initial values of parameters are"
    #msg = "Parameters: " + "%.5f " * len(pred_param)
    #print msg % tuple(pred_param.get_param_vals())
    #print

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope
    params = phil_scope.fetch(source=parse('')).extract()

    # in case we want a plot
    params.refinement.refinery.journal.track_parameter_correlation = True

    # scan static first
    from dials.algorithms.refinement.refiner import RefinerFactory
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()

    # scan varying
    params.refinement.parameterisation.scan_varying = True
    refiner = RefinerFactory.from_parameters_data_experiments(params,
                                                              obs_refs,
                                                              experiments,
                                                              verbosity=0)
    history = refiner.run()
コード例 #23
0
def init_test():

    models = setup_geometry.Extract(master_phil)

    single_panel_detector = models.detector
    gonio = models.goniometer
    crystal = models.crystal
    beam = models.beam

    # Make a 3x3 multi panel detector filling the same space as the existing
    # single panel detector. Each panel of the multi-panel detector has pixels
    # with 1/3 the length dimensions of the single panel.
    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # Build a mock scan for a 180 degree sequence
    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sequence_range = scan.get_oscillation_range(deg=False)
    im_width = scan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build ExperimentLists
    experiments_single_panel = ExperimentList()
    experiments_multi_panel = ExperimentList()
    experiments_single_panel.append(
        Experiment(
            beam=beam,
            detector=single_panel_detector,
            goniometer=gonio,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )
    experiments_multi_panel.append(
        Experiment(
            beam=beam,
            detector=multi_panel_detector,
            goniometer=gonio,
            scan=scan,
            crystal=crystal,
            imageset=None,
        )
    )

    # Generate some reflections

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # for the reflection predictor, it doesn't matter which experiment list is
    # passed, as the detector is not used
    ref_predictor = ScansRayPredictor(
        experiments_single_panel, scan.get_oscillation_range(deg=False)
    )

    # get two sets of identical reflections
    obs_refs_single = ref_predictor(indices)
    obs_refs_multi = ref_predictor(indices)
    for r1, r2 in zip(obs_refs_single.rows(), obs_refs_multi.rows()):
        assert r1["s1"] == r2["s1"]

    # get the panel intersections
    sel = ray_intersection(single_panel_detector, obs_refs_single)
    obs_refs_single = obs_refs_single.select(sel)
    sel = ray_intersection(multi_panel_detector, obs_refs_multi)
    obs_refs_multi = obs_refs_multi.select(sel)
    assert len(obs_refs_single) == len(obs_refs_multi)

    # Set 'observed' centroids from the predicted ones
    obs_refs_single["xyzobs.mm.value"] = obs_refs_single["xyzcal.mm"]
    obs_refs_multi["xyzobs.mm.value"] = obs_refs_multi["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = single_panel_detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs_single), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs_single), (px_size[1] / 2.0) ** 2)
    var_phi = flex.double(len(obs_refs_single), (im_width / 2.0) ** 2)

    # set the variances and frame numbers
    obs_refs_single["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    obs_refs_multi["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Add in flags and ID columns by copying into standard reflection tables
    tmp = flex.reflection_table.empty_standard(len(obs_refs_single))
    tmp.update(obs_refs_single)
    obs_refs_single = tmp
    tmp = flex.reflection_table.empty_standard(len(obs_refs_multi))
    tmp.update(obs_refs_multi)
    obs_refs_multi = tmp

    test_data = namedtuple(
        "test_data",
        [
            "experiments_single_panel",
            "experiments_multi_panel",
            "observations_single_panel",
            "observations_multi_panel",
        ],
    )

    return test_data(
        experiments_single_panel,
        experiments_multi_panel,
        obs_refs_single,
        obs_refs_multi,
    )
コード例 #24
0
def test():
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from scitbx.array_family import flex
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Get modules to build models and minimiser using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry
    import dials.test.algorithms.refinement.setup_minimiser as setup_minimiser

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel, )
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation, )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        ScansExperimentsPredictor,
    )
    from cctbx.sgtbx import space_group, space_group_symbols

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation, )

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff, )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    #############################
    # Setup experimental models #
    #############################

    override = """geometry.parameters
  {
    beam.wavelength.random=False
    beam.wavelength.value=1.0
    beam.direction.inclination.random=False
    crystal.a.length.random=False
    crystal.a.length.value=12.0
    crystal.a.direction.method=exactly
    crystal.a.direction.exactly.direction=1.0 0.002 -0.004
    crystal.b.length.random=False
    crystal.b.length.value=14.0
    crystal.b.direction.method=exactly
    crystal.b.direction.exactly.direction=-0.002 1.0 0.002
    crystal.c.length.random=False
    crystal.c.length.value=13.0
    crystal.c.direction.method=exactly
    crystal.c.direction.exactly.direction=0.002 -0.004 1.0
    detector.directions.method=exactly
    detector.directions.exactly.dir1=0.99 0.002 -0.004
    detector.directions.exactly.norm=0.002 -0.001 0.99
    detector.centre.method=exactly
    detector.centre.exactly.value=1.0 -0.5 199.0
  }"""

    master_phil = parse(
        """
  include scope dials.test.algorithms.refinement.geometry_phil
  include scope dials.test.algorithms.refinement.minimiser_phil
  """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil,
                                    local_overrides=override,
                                    verbose=False)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )

    # Build an ExperimentList
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    # Create the PredictionParameterisation
    pred_param = XYPhiPredictionParameterisation(experiments, [det_param],
                                                 [s0_param], [xlo_param],
                                                 [xluc_param])

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 4 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 4.0, 4.0, 4.0])
    ]
    det_param.set_param_vals(p_vals)

    # shift beam by 4 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 4.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=3 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [3.0, 3.0, 3.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # alpha and beta angles)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, -0.1, 0.1, 0.1, -0.1, 0.0])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # The total number of observations should be 1128
    assert len(obs_refs) == 1128

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs,
                               experiments,
                               outlier_detector=None,
                               close_to_spindle_cutoff=0.1)

    ##############################
    # Set up the target function #
    ##############################

    # The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
    # 1/3 the image width in radians. For the simulated data, these are just made up
    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments,
        ref_predictor,
        refman,
        pred_param,
        restraints_parameterisation=None)

    ######################################
    # Set up the LSTBX refinement engine #
    ######################################

    overrides = """minimiser.parameters.engine=GaussNewton
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 1
    assert approx_equal(
        mytarget.rmsds(),
        (0.00508252354876, 0.00420954552156, 8.97303428289e-05))

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    ######################################################
    # Set up the LBFGS with curvatures refinement engine #
    ######################################################

    overrides = """minimiser.parameters.engine=LBFGScurvs
  minimiser.parameters.logfile=None"""
    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      local_overrides=overrides).refiner

    refiner.run()

    assert mytarget.achieved()
    assert refiner.get_num_steps() == 9
    assert approx_equal(mytarget.rmsds(),
                        (0.0558857700305, 0.0333446685335, 0.000347402754278))
コード例 #25
0
def test(args=[]):
    #############################
    # Setup experimental models #
    #############################
    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    single_panel_detector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Make a 3x3 multi panel detector filling the same space as the existing
    # single panel detector. Each panel of the multi-panel detector has pixels with
    # 1/3 the length dimensions of the single panel.

    multi_panel_detector = Detector()
    for x in range(3):
        for y in range(3):
            new_panel = make_panel_in_array((x, y), single_panel_detector[0])
            multi_panel_detector.add_panel(new_panel)

    # Build a mock scan for a 180 degree sweep
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sweep_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build ExperimentLists
    experiments_single_panel = ExperimentList()
    experiments_multi_panel = ExperimentList()
    experiments_single_panel.append(
        Experiment(
            beam=mybeam,
            detector=single_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))
    experiments_multi_panel.append(
        Experiment(
            beam=mybeam,
            detector=multi_panel_detector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        ))

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(single_panel_detector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    multi_det_param = DetectorParameterisationMultiPanel(
        multi_panel_detector, mybeam)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    # xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(experiments_single_panel,
                                                 [det_param], [s0_param],
                                                 [xlo_param], [xluc_param])

    pred_param2 = XYPhiPredictionParameterisation(
        experiments_multi_panel,
        [multi_det_param],
        [s0_param],
        [xlo_param],
        [xluc_param],
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detectors by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    det_param.set_param_vals(p_vals)

    multi_det_p_vals = multi_det_param.get_param_vals()
    p_vals = [
        a + b for a, b in zip(multi_det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])
    ]
    multi_det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # for the reflection predictor, it doesn't matter which experiment list is
    # passed, as the detector is not used
    ref_predictor = ScansRayPredictor(experiments_single_panel, sweep_range)

    # get two sets of identical reflections
    obs_refs = ref_predictor(indices)
    obs_refs2 = ref_predictor(indices)
    for r1, r2 in zip(obs_refs, obs_refs2):
        assert r1["s1"] == r2["s1"]

    # get the panel intersections
    sel = ray_intersection(single_panel_detector, obs_refs)
    obs_refs = obs_refs.select(sel)
    sel = ray_intersection(multi_panel_detector, obs_refs2)
    obs_refs2 = obs_refs2.select(sel)
    assert len(obs_refs) == len(obs_refs2)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]
    obs_refs2["xyzobs.mm.value"] = obs_refs2["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = single_panel_detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)

    # set the variances and frame numbers
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    obs_refs2["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Add in flags and ID columns by copying into standard reflection tables
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp
    tmp = flex.reflection_table.empty_standard(len(obs_refs2))
    tmp.update(obs_refs2)
    obs_refs2 = tmp

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments_single_panel)
    refman2 = ReflectionManager(obs_refs, experiments_multi_panel)

    ###############################
    # Set up the target functions #
    ###############################

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_single_panel,
        ScansExperimentsPredictor(experiments_single_panel),
        refman,
        pred_param,
        restraints_parameterisation=None,
    )
    mytarget2 = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments_multi_panel,
        ScansExperimentsPredictor(experiments_multi_panel),
        refman2,
        pred_param2,
        restraints_parameterisation=None,
    )

    #################################
    # Set up the refinement engines #
    #################################

    refiner = setup_minimiser.Extract(master_phil,
                                      mytarget,
                                      pred_param,
                                      cmdline_args=args).refiner
    refiner2 = setup_minimiser.Extract(master_phil,
                                       mytarget2,
                                       pred_param2,
                                       cmdline_args=args).refiner

    refiner.run()

    # reset parameters and run refinement with the multi panel detector
    s0_param.set_param_vals(s0_p_vals)
    multi_det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    refiner2.run()

    # same number of steps
    assert refiner.get_num_steps() == refiner2.get_num_steps()

    # same rmsds
    for rmsd, rmsd2 in zip(refiner.history["rmsd"], refiner2.history["rmsd"]):
        assert approx_equal(rmsd, rmsd2)

    # same parameter values each step
    for params, params2 in zip(refiner.history["parameter_vector"],
                               refiner.history["parameter_vector"]):
        assert approx_equal(params, params2)
コード例 #26
0
def test(args=[]):
    from math import pi

    from cctbx.sgtbx import space_group, space_group_symbols

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import Experiment, ExperimentList
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge
    from scitbx import matrix
    from scitbx.array_family import flex

    # Get modules to build models and minimiser using PHIL
    import dials.tests.algorithms.refinement.setup_geometry as setup_geometry
    import dials.tests.algorithms.refinement.setup_minimiser as setup_minimiser
    from dials.algorithms.refinement.parameterisation.beam_parameters import (
        BeamParameterisation,
    )
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Model parameterisations
    from dials.algorithms.refinement.parameterisation.detector_parameters import (
        DetectorParameterisationSinglePanel,
    )

    # Parameterisation of the prediction equation
    from dials.algorithms.refinement.parameterisation.prediction_parameters import (
        XYPhiPredictionParameterisation,
    )
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansExperimentsPredictor,
        ScansRayPredictor,
    )
    from dials.algorithms.refinement.reflection_manager import ReflectionManager

    # Imports for the target function
    from dials.algorithms.refinement.target import (
        LeastSquaresPositionalResidualWithRmsdCutoff,
    )

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator, ray_intersection

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
      include scope dials.tests.algorithms.refinement.geometry_phil
      include scope dials.tests.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    models = setup_geometry.Extract(master_phil, cmdline_args=args)

    mydetector = models.detector
    mygonio = models.goniometer
    mycrystal = models.crystal
    mybeam = models.beam

    # Build a mock scan for a 180 degree sequence
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=list(range(1800)),
        deg=True,
    )
    sequence_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert sequence_range == (0.0, pi)
    assert approx_equal(im_width, 0.1 * pi / 180.0)

    # Build an experiment list
    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            goniometer=mygonio,
            scan=myscan,
            crystal=mycrystal,
            imageset=None,
        )
    )

    ###########################
    # Parameterise the models #
    ###########################

    det_param = DetectorParameterisationSinglePanel(mydetector)
    s0_param = BeamParameterisation(mybeam, mygonio)
    xlo_param = CrystalOrientationParameterisation(mycrystal)
    xluc_param = CrystalUnitCellParameterisation(mycrystal)

    # Fix beam to the X-Z plane (imgCIF geometry), fix wavelength
    s0_param.set_fixed([True, False, True])

    # Fix crystal parameters
    # xluc_param.set_fixed([True, True, True, True, True, True])

    ########################################################################
    # Link model parameterisations together into a parameterisation of the #
    # prediction equation                                                  #
    ########################################################################

    pred_param = XYPhiPredictionParameterisation(
        experiments, [det_param], [s0_param], [xlo_param], [xluc_param]
    )

    ################################
    # Apply known parameter shifts #
    ################################

    # shift detector by 1.0 mm each translation and 2 mrad each rotation
    det_p_vals = det_param.get_param_vals()
    p_vals = [a + b for a, b in zip(det_p_vals, [1.0, 1.0, 1.0, 2.0, 2.0, 2.0])]
    det_param.set_param_vals(p_vals)

    # shift beam by 2 mrad in free axis
    s0_p_vals = s0_param.get_param_vals()
    p_vals = list(s0_p_vals)

    p_vals[0] += 2.0
    s0_param.set_param_vals(p_vals)

    # rotate crystal a bit (=2 mrad each rotation)
    xlo_p_vals = xlo_param.get_param_vals()
    p_vals = [a + b for a, b in zip(xlo_p_vals, [2.0, 2.0, 2.0])]
    xlo_param.set_param_vals(p_vals)

    # change unit cell a bit (=0.1 Angstrom length upsets, 0.1 degree of
    # gamma angle)
    xluc_p_vals = xluc_param.get_param_vals()
    cell_params = mycrystal.get_unit_cell().parameters()
    cell_params = [a + b for a, b in zip(cell_params, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1])]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(mycrystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    #############################
    # Generate some reflections #
    #############################

    print("Reflections will be generated with the following geometry:")
    print(mybeam)
    print(mydetector)
    print(mycrystal)
    print("Target values of parameters are")
    msg = "Parameters: " + "%.5f " * len(pred_param)
    print(msg % tuple(pred_param.get_param_vals()))
    print()

    # All indices in a 2.0 Angstrom sphere
    resolution = 2.0
    index_generator = IndexGenerator(
        mycrystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sequence range
    ray_predictor = ScansRayPredictor(experiments, sequence_range)
    obs_refs = ray_predictor(indices)

    print("Total number of reflections excited", len(obs_refs))

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ScansExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"]

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0) ** 2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0) ** 2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0) ** 2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    print("Total number of observations made", len(obs_refs))

    ###############################
    # Undo known parameter shifts #
    ###############################

    s0_param.set_param_vals(s0_p_vals)
    det_param.set_param_vals(det_p_vals)
    xlo_param.set_param_vals(xlo_p_vals)
    xluc_param.set_param_vals(xluc_p_vals)

    print("Initial values of parameters are")
    msg = "Parameters: " + "%.5f " * len(pred_param)
    print(msg % tuple(pred_param.get_param_vals()))
    print()

    #####################################
    # Select reflections for refinement #
    #####################################

    refman = ReflectionManager(obs_refs, experiments)

    ##############################
    # Set up the target function #
    ##############################

    # The current 'achieved' criterion compares RMSD against 1/3 the pixel size and
    # 1/3 the image width in radians. For the simulated data, these are just made up

    mytarget = LeastSquaresPositionalResidualWithRmsdCutoff(
        experiments, ref_predictor, refman, pred_param, restraints_parameterisation=None
    )

    ################################
    # Set up the refinement engine #
    ################################

    refiner = setup_minimiser.Extract(
        master_phil, mytarget, pred_param, cmdline_args=args
    ).refiner

    print("Prior to refinement the experimental model is:")
    print(mybeam)
    print(mydetector)
    print(mycrystal)

    refiner.run()

    print()
    print("Refinement has completed with the following geometry:")
    print(mybeam)
    print(mydetector)
    print(mycrystal)
コード例 #27
0
ファイル: tst_spot_prediction.py プロジェクト: dials/dials
  def __init__(self):
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.spot_prediction import ScanStaticRayPredictor
    from dials.algorithms.spot_prediction import ray_intersection
    from iotbx.xds import xparm, integrate_hkl
    from dials.util import ioutil
    from math import ceil
    import dxtbx
    from rstbx.cftbx.coordinate_frame_converter import \
        coordinate_frame_converter
    from scitbx import matrix

    # The XDS files to read from
    integrate_filename = join(dials_regression, 'data/sim_mx/INTEGRATE.HKL')
    gxparm_filename = join(dials_regression, 'data/sim_mx/GXPARM.XDS')

    # Read the XDS files
    self.integrate_handle = integrate_hkl.reader()
    self.integrate_handle.read_file(integrate_filename)
    self.gxparm_handle = xparm.reader()
    self.gxparm_handle.read_file(gxparm_filename)

    # Get the parameters we need from the GXPARM file
    models = dxtbx.load(gxparm_filename)
    self.beam = models.get_beam()
    self.gonio = models.get_goniometer()
    self.detector = models.get_detector()
    self.scan = models.get_scan()

    assert(len(self.detector) == 1)

    #print self.detector

    # Get crystal parameters
    self.space_group_type = ioutil.get_space_group_type_from_xparm(
        self.gxparm_handle)
    cfc = coordinate_frame_converter(gxparm_filename)
    a_vec = cfc.get('real_space_a')
    b_vec = cfc.get('real_space_b')
    c_vec = cfc.get('real_space_c')
    self.unit_cell = cfc.get_unit_cell()
    self.ub_matrix = matrix.sqr(a_vec + b_vec + c_vec).inverse()

    # Get the minimum resolution in the integrate file
    self.d_min = self.detector[0].get_max_resolution_at_corners(
        self.beam.get_s0())

    # Get the number of frames from the max z value
    xcal, ycal, zcal = zip(*self.integrate_handle.xyzcal)
    self.scan.set_image_range((self.scan.get_image_range()[0],
                               self.scan.get_image_range()[0] +
                                int(ceil(max(zcal)))))

    # Create the index generator
    generate_indices = IndexGenerator(self.unit_cell, self.space_group_type,
                                      self.d_min)

    s0 = self.beam.get_s0()
    m2 = self.gonio.get_rotation_axis()
    fixed_rotation = self.gonio.get_fixed_rotation()
    setting_rotation = self.gonio.get_setting_rotation()
    UB = self.ub_matrix
    dphi = self.scan.get_oscillation_range(deg=False)

    # Create the ray predictor
    self.predict_rays = ScanStaticRayPredictor(s0, m2, fixed_rotation,
                                               setting_rotation, dphi)

    # Predict the spot locations
    self.reflections = self.predict_rays(
                                    generate_indices.to_array(), UB)

    # Calculate the intersection of the detector and reflection frames
    success = ray_intersection(self.detector, self.reflections)
    self.reflections.select(success)
コード例 #28
0
  index_generator = IndexGenerator(mycrystal.get_unit_cell(),
                  space_group(space_group_symbols(1).hall()).type(), resolution)
  indices = index_generator.to_array()

  # for the reflection predictor, it doesn't matter which experiment list is
  # passed, as the detector is not used
  ref_predictor = ScansRayPredictor(experiments_single_panel, sweep_range)

  # get two sets of identical reflections
  obs_refs = ref_predictor(indices)
  obs_refs2 = ref_predictor(indices)
  for r1, r2 in zip(obs_refs, obs_refs2):
    assert r1['s1'] == r2['s1']

  # get the panel intersections
  sel = ray_intersection(single_panel_detector, obs_refs)
  obs_refs = obs_refs.select(sel)
  sel = ray_intersection(multi_panel_detector, obs_refs2)
  obs_refs2 = obs_refs2.select(sel)
  assert len(obs_refs) == len(obs_refs2)

  # Set 'observed' centroids from the predicted ones
  obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']
  obs_refs2['xyzobs.mm.value'] = obs_refs2['xyzcal.mm']

  # Invent some variances for the centroid positions of the simulated data
  im_width = 0.1 * pi / 180.
  px_size = single_panel_detector[0].get_pixel_size()
  var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
  var_y = flex.double(len(obs_refs), (px_size[1] / 2.)**2)
  var_phi = flex.double(len(obs_refs), (im_width / 2.)**2)
コード例 #29
0
print

# All indices in a 2.0 Angstrom sphere
resolution = 2.0
index_generator = IndexGenerator(mycrystal.get_unit_cell(),
                space_group(space_group_symbols(1).hall()).type(), resolution)
indices = index_generator.to_array()

# Predict rays within the sweep range
ray_predictor = ScansRayPredictor(experiments, sweep_range)
obs_refs = ray_predictor(indices)

print "Total number of reflections excited", len(obs_refs)

# Take only those rays that intersect the detector
intersects = ray_intersection(mydetector, obs_refs)
obs_refs = obs_refs.select(intersects)

# Make a reflection predictor and re-predict for all these reflections. The
# result is the same, but we gain also the flags and xyzcal.px columns
ref_predictor = ExperimentsPredictor(experiments)
obs_refs['id'] = flex.size_t(len(obs_refs), 0)
obs_refs = ref_predictor(obs_refs)

# Set 'observed' centroids from the predicted ones
obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']

# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.
px_size = mydetector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
コード例 #30
0
def test2():
    """Test on simulated data"""

    # Get models for reflection prediction
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    from libtbx.phil import parse

    overrides = """geometry.parameters.crystal.a.length.value = 77
  geometry.parameters.crystal.b.length.value = 77
  geometry.parameters.crystal.c.length.value = 37"""

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      """,
        process_includes=True,
    )

    from dxtbx.model import Crystal

    models = setup_geometry.Extract(master_phil)
    crystal = Crystal(
        real_space_a=(2.62783398111729, -63.387215823567125,
                      -45.751375737456975),
        real_space_b=(15.246640559660356, -44.48254330406616,
                      62.50501032727026),
        real_space_c=(-76.67246874451074, -11.01804131886244,
                      10.861322446352226),
        space_group_symbol="I 2 3",
    )
    detector = models.detector
    goniometer = models.goniometer
    beam = models.beam

    # Build a mock scan for a 180 degree sweep
    from dxtbx.model import ScanFactory

    sf = ScanFactory()
    scan = sf.make_scan(
        image_range=(1, 1800),
        exposure_times=0.1,
        oscillation=(0, 0.1),
        epochs=range(1800),
        deg=True,
    )

    # Build an experiment list
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    experiments = ExperimentList()
    experiments.append(
        Experiment(
            beam=beam,
            detector=detector,
            goniometer=goniometer,
            scan=scan,
            crystal=crystal,
            imageset=None,
        ))

    # Generate all indices in a 1.5 Angstrom sphere
    from dials.algorithms.spot_prediction import IndexGenerator
    from cctbx.sgtbx import space_group, space_group_symbols

    resolution = 1.5
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    from dials.algorithms.refinement.prediction import ScansRayPredictor

    sweep_range = scan.get_oscillation_range(deg=False)
    ray_predictor = ScansRayPredictor(experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    from dials.algorithms.spot_prediction import ray_intersection

    intersects = ray_intersection(detector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    from dials.algorithms.refinement.prediction import ExperimentsPredictor

    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs["id"] = flex.int(len(obs_refs), 0)
    obs_refs = ref_predictor(obs_refs)

    # Copy 'observed' centroids from the predicted ones, applying sinusoidal
    # offsets
    obs_x, obs_y, obs_z = obs_refs["xyzcal.mm"].parts()

    # obs_z is in range (0, pi). Calculate offsets for phi at twice that
    # frequency
    im_width = scan.get_oscillation(deg=False)[1]
    z_off = flex.sin(2 * obs_z) * im_width
    obs_z += z_off

    # Calculate offsets for x
    pixel_size = detector[0].get_pixel_size()
    x_off = flex.sin(20 * obs_z) * pixel_size[0]

    # Calculate offsets for y with a phase-shifted sine wave
    from math import pi

    y_off = flex.sin(4 * obs_z + pi / 6) * pixel_size[1]

    # Incorporate the offsets into the 'observed' centroids
    obs_z += z_off
    obs_x += x_off
    obs_y += y_off
    obs_refs["xyzobs.mm.value"] = flex.vec3_double(obs_x, obs_y, obs_z)

    # Now do centroid analysis of the residuals
    results = CentroidAnalyser(obs_refs, debug=True)()

    # FIXME this test shows that the suggested interval width heuristic is not
    # yet robust. This simulation function seems a useful direction to proceed
    # in though
    raise RuntimeError("test2 failed")

    print("OK")
    return
コード例 #31
0
def test(args=[]):
    # Python and cctbx imports
    from math import pi
    from scitbx import matrix
    from libtbx.phil import parse
    from libtbx.test_utils import approx_equal

    # Import for surgery on reflection_tables
    from dials.array_family import flex

    # Get module to build models using PHIL
    import dials.test.algorithms.refinement.setup_geometry as setup_geometry

    # We will set up a mock scan and a mock experiment list
    from dxtbx.model import ScanFactory
    from dxtbx.model.experiment_list import ExperimentList, Experiment

    # Crystal parameterisations
    from dials.algorithms.refinement.parameterisation.crystal_parameters import (
        CrystalOrientationParameterisation,
        CrystalUnitCellParameterisation,
    )

    # Symmetry constrained parameterisation for the unit cell
    from cctbx.uctbx import unit_cell
    from rstbx.symmetry.constraints.parameter_reduction import symmetrize_reduce_enlarge

    # Reflection prediction
    from dials.algorithms.spot_prediction import IndexGenerator
    from dials.algorithms.refinement.prediction.managed_predictors import (
        ScansRayPredictor,
        StillsExperimentsPredictor,
    )
    from dials.algorithms.spot_prediction import ray_intersection
    from cctbx.sgtbx import space_group, space_group_symbols

    #############################
    # Setup experimental models #
    #############################

    master_phil = parse(
        """
      include scope dials.test.algorithms.refinement.geometry_phil
      include scope dials.test.algorithms.refinement.minimiser_phil
      """,
        process_includes=True,
    )

    # build models, with a larger crystal than default in order to get enough
    # reflections on the 'still' image
    param = """
  geometry.parameters.crystal.a.length.range=40 50;
  geometry.parameters.crystal.b.length.range=40 50;
  geometry.parameters.crystal.c.length.range=40 50;
  geometry.parameters.random_seed = 42"""
    models = setup_geometry.Extract(master_phil,
                                    cmdline_args=args,
                                    local_overrides=param)

    crystal = models.crystal
    mydetector = models.detector
    mygonio = models.goniometer
    mybeam = models.beam

    # Build a mock scan for a 1.5 degree wedge. Only used for generating indices near
    # the Ewald sphere
    sf = ScanFactory()
    myscan = sf.make_scan(
        image_range=(1, 1),
        exposure_times=0.1,
        oscillation=(0, 1.5),
        epochs=list(range(1)),
        deg=True,
    )
    sweep_range = myscan.get_oscillation_range(deg=False)
    im_width = myscan.get_oscillation(deg=False)[1]
    assert approx_equal(im_width, 1.5 * pi / 180.0)

    # Build experiment lists
    stills_experiments = ExperimentList()
    stills_experiments.append(
        Experiment(beam=mybeam,
                   detector=mydetector,
                   crystal=crystal,
                   imageset=None))
    scans_experiments = ExperimentList()
    scans_experiments.append(
        Experiment(
            beam=mybeam,
            detector=mydetector,
            crystal=crystal,
            goniometer=mygonio,
            scan=myscan,
            imageset=None,
        ))

    ##########################################################
    # Parameterise the models (only for perturbing geometry) #
    ##########################################################

    xlo_param = CrystalOrientationParameterisation(crystal)
    xluc_param = CrystalUnitCellParameterisation(crystal)

    ################################
    # Apply known parameter shifts #
    ################################

    # rotate crystal (=5 mrad each rotation)
    xlo_p_vals = []
    p_vals = xlo_param.get_param_vals()
    xlo_p_vals.append(p_vals)
    new_p_vals = [a + b for a, b in zip(p_vals, [5.0, 5.0, 5.0])]
    xlo_param.set_param_vals(new_p_vals)

    # change unit cell (=1.0 Angstrom length upsets, 0.5 degree of
    # gamma angle)
    xluc_p_vals = []
    p_vals = xluc_param.get_param_vals()
    xluc_p_vals.append(p_vals)
    cell_params = crystal.get_unit_cell().parameters()
    cell_params = [
        a + b for a, b in zip(cell_params, [1.0, 1.0, -1.0, 0.0, 0.0, 0.5])
    ]
    new_uc = unit_cell(cell_params)
    newB = matrix.sqr(new_uc.fractionalization_matrix()).transpose()
    S = symmetrize_reduce_enlarge(crystal.get_space_group())
    S.set_orientation(orientation=newB)
    X = tuple([e * 1.0e5 for e in S.forward_independent_parameters()])
    xluc_param.set_param_vals(X)

    # keep track of the target crystal model to compare with refined
    from copy import deepcopy

    target_crystal = deepcopy(crystal)

    #############################
    # Generate some reflections #
    #############################

    # All indices in a 2.0 Angstrom sphere for crystal
    resolution = 2.0
    index_generator = IndexGenerator(
        crystal.get_unit_cell(),
        space_group(space_group_symbols(1).hall()).type(),
        resolution,
    )
    indices = index_generator.to_array()

    # Build a ray predictor and predict rays close to the Ewald sphere by using
    # the narrow rotation scan
    ref_predictor = ScansRayPredictor(scans_experiments, sweep_range)
    obs_refs = ref_predictor(indices, experiment_id=0)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(mydetector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Add in flags and ID columns by copying into standard reflection table
    tmp = flex.reflection_table.empty_standard(len(obs_refs))
    tmp.update(obs_refs)
    obs_refs = tmp

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.0
    px_size = mydetector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.0)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.0)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.0)**2)
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)

    # Re-predict using the stills reflection predictor
    stills_ref_predictor = StillsExperimentsPredictor(stills_experiments)
    obs_refs_stills = stills_ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs_stills["xyzobs.mm.value"] = obs_refs_stills["xyzcal.mm"]

    ###############################
    # Undo known parameter shifts #
    ###############################

    xlo_param.set_param_vals(xlo_p_vals[0])
    xluc_param.set_param_vals(xluc_p_vals[0])

    # make a refiner
    from dials.algorithms.refinement.refiner import phil_scope

    params = phil_scope.fetch(source=parse("")).extract()

    # Change this to get a plot
    do_plot = False
    if do_plot:
        params.refinement.refinery.journal.track_parameter_correlation = True

    from dials.algorithms.refinement.refiner import RefinerFactory

    # decrease bin_size_fraction to terminate on RMSD convergence
    params.refinement.target.bin_size_fraction = 0.01
    params.refinement.parameterisation.beam.fix = "all"
    params.refinement.parameterisation.detector.fix = "all"
    refiner = RefinerFactory.from_parameters_data_experiments(
        params, obs_refs_stills, stills_experiments)

    # run refinement
    history = refiner.run()

    # regression tests
    assert len(history["rmsd"]) == 9

    refined_crystal = refiner.get_experiments()[0].crystal
    uc1 = refined_crystal.get_unit_cell()
    uc2 = target_crystal.get_unit_cell()
    assert uc1.is_similar_to(uc2)

    if do_plot:
        plt = refiner.parameter_correlation_plot(
            len(history["parameter_correlation"]) - 1)
        plt.show()
コード例 #32
0
def generate_reflections(experiments, xyzvar=(0.0, 0.0, 0.0)):
    """Generate synthetic reflection centroids using the supplied experiments,
    with normally-distributed errors applied the variances in xyzvar"""

    # check input
    if [e >= 0.0 for e in xyzvar].count(False) > 0:
        msg = "negative variance requested in " + str(xyzvar) + "!"
        raise RuntimeError(msg)

    refs = []
    for iexp, exp in enumerate(experiments):

        info("Generating reflections for experiment {0}".format(iexp))

        # All indices in a 1.5 Angstrom sphere
        resolution = 1.5
        index_generator = IndexGenerator(
            exp.crystal.get_unit_cell(),
            space_group(space_group_symbols(1).hall()).type(),
            resolution,
        )
        indices = index_generator.to_array()

        # Predict rays within the sweep range
        ray_predictor = ScansRayPredictor(
            experiments, exp.scan.get_oscillation_range(deg=False)
        )
        obs_refs = ray_predictor.predict(indices, experiment_id=iexp)

        info("Total number of reflections excited: {0}".format(len(obs_refs)))

        # Take only those rays that intersect the detector
        intersects = ray_intersection(exp.detector, obs_refs)
        obs_refs = obs_refs.select(intersects)
        obs_refs["id"] = flex.size_t(len(obs_refs), iexp)
        refs.append(obs_refs)

        info("Total number of impacts: {0}".format(len(obs_refs)))

    # Concatenate reflections
    obs_refs = reduce(lambda x, y: x.extend(y), refs)

    # Make a reflection predictor and re-predict for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    ref_predictor = ExperimentsPredictor(experiments)
    obs_refs = ref_predictor.predict(obs_refs)

    # calculate (uncorrelated) errors to offset the centroids
    # this is safe as elts of xyzvar are already tested to be > 0
    sigX, sigY, sigZ = [sqrt(e) for e in xyzvar]
    shift = [
        (random.gauss(0, sigX), random.gauss(0, sigY), random.gauss(0, sigZ))
        for _ in xrange(len(obs_refs))
    ]
    shift = flex.vec3_double(shift)

    # Set 'observed' centroids from the predicted ones
    obs_refs["xyzobs.mm.value"] = obs_refs["xyzcal.mm"] + shift

    # Store variances for the centroid positions of the simulated data. If errors
    # are zero, invent some variances
    if tuple(xyzvar) == (0.0, 0.0, 0.0):
        im_width = exp.scan.get_oscillation()[1] * pi / 180.0
        px_size = exp.detector[0].get_pixel_size()
        xyzvar = (
            (px_size[0] / 2.0) ** 2,
            (px_size[1] / 2.0) ** 2,
            (im_width / 2.0) ** 2,
        )
    var_x = flex.double(len(obs_refs), xyzvar[0])
    var_y = flex.double(len(obs_refs), xyzvar[1])
    var_phi = flex.double(len(obs_refs), xyzvar[2])
    obs_refs["xyzobs.mm.variance"] = flex.vec3_double(var_x, var_y, var_phi)
    info("Total number of observations made: {0}".format(len(obs_refs)))

    return obs_refs
コード例 #33
0
def generate_reflections(experiments, xyzvar=(0., 0., 0.)):
  '''Generate synthetic reflection centroids using the supplied experiments,
  with normally-distributed errors applied the variances in xyzvar'''

  # check input
  if [e >= 0. for e in xyzvar].count(False) > 0:
    msg = "negative variance requested in " + str(xyzvar) + "!"
    raise RuntimeError(msg)

  refs = []
  for iexp, exp in enumerate(experiments):

    info("Generating reflections for experiment {0}".format(iexp))

    # All indices in a 1.5 Angstrom sphere
    resolution = 1.5
    index_generator = IndexGenerator(exp.crystal.get_unit_cell(),
                    space_group(space_group_symbols(1).hall()).type(), resolution)
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(experiments,
      exp.scan.get_oscillation_range(deg=False))
    obs_refs = ray_predictor.predict(indices, experiment_id=iexp)

    info("Total number of reflections excited: {0}".format(len(obs_refs)))

    # Take only those rays that intersect the detector
    intersects = ray_intersection(exp.detector, obs_refs)
    obs_refs = obs_refs.select(intersects)
    obs_refs['id'] = flex.size_t(len(obs_refs), iexp)
    refs.append(obs_refs)

    info("Total number of impacts: {0}".format(len(obs_refs)))

  # Concatenate reflections
  obs_refs = reduce(lambda x, y: x.extend(y), refs)

  # Make a reflection predictor and re-predict for all these reflections. The
  # result is the same, but we gain also the flags and xyzcal.px columns
  ref_predictor = ExperimentsPredictor(experiments)
  obs_refs = ref_predictor.predict(obs_refs)

  # calculate (uncorrelated) errors to offset the centroids
  # this is safe as elts of xyzvar are already tested to be > 0
  sigX, sigY, sigZ = [sqrt(e) for e in xyzvar]
  shift = [(random.gauss(0, sigX),
            random.gauss(0, sigY),
            random.gauss(0, sigZ)) for _ in xrange(len(obs_refs))]
  shift = flex.vec3_double(shift)

  # Set 'observed' centroids from the predicted ones
  obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm'] + shift

  # Store variances for the centroid positions of the simulated data. If errors
  # are zero, invent some variances
  if tuple(xyzvar) == (0., 0., 0.):
    im_width = exp.scan.get_oscillation()[1] * pi / 180.
    px_size = exp.detector[0].get_pixel_size()
    xyzvar = ((px_size[0] / 2.)**2, (px_size[1] / 2.)**2, (im_width / 2.)**2)
  var_x = flex.double(len(obs_refs), xyzvar[0])
  var_y = flex.double(len(obs_refs), xyzvar[1])
  var_phi = flex.double(len(obs_refs), xyzvar[2])
  obs_refs['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)
  info("Total number of observations made: {0}".format(len(obs_refs)))

  return obs_refs
コード例 #34
0
la = LauePredictor(s0, cell, U, lam_min, lam_max, d_min, spacegroup)
s1, new_lams, q_vecs, millers = la.predict_s1()

# Build new reflection table for predictions
preds = reflection_table.empty_standard(len(s1))

# Populate needed columns
preds['s1'] = flex.vec3_double(s1)
preds['phi'] = flex.double(np.zeros(len(s1)))  # Data are stills
preds['wavelength'] = flex.double(new_lams)
preds['rlp'] = flex.vec3_double(q_vecs)
preds['miller_index'] = flex.miller_index(millers.astype('int').tolist())

# Get which reflections intersect detector
print('Getting centroids.')
intersects = ray_intersection(experiment.detector, preds)
preds = preds.select(intersects)
new_lams = new_lams[intersects]

# Generate a KDE
_, _, kde = gen_kde(elist, refls)

# Get predicted centroids
x = preds['xyzcal.mm'].parts()[0].as_numpy_array()
y = preds['xyzcal.mm'].parts()[1].as_numpy_array()

# Get probability densities for predictions:
rlps = preds['rlp'].as_numpy_array()
norms = (np.linalg.norm(rlps, axis=1))**2
pred_data = [norms, new_lams]
probs = kde.pdf(pred_data)