コード例 #1
0
    def _local_setup(self, reflections):
        """Setup additional attributes used in gradients calculation. These are
        specific to scans-type prediction parameterisations"""

        # Spindle rotation matrices for every reflection
        # R = self._axis.axis_and_angle_as_r3_rotation_matrix(phi)
        # R = flex.mat3_double(len(reflections))
        # NB for now use flex.vec3_double.rotate_around_origin each time I need the
        # rotation matrix R.

        # r is the reciprocal lattice vector, in the lab frame
        self._phi_calc = reflections["xyzcal.mm"].parts()[2]
        q = self._fixed_rotation * (self._UB * self._h)
        self._r = self._setting_rotation * q.rotate_around_origin(
            self._axis, self._phi_calc
        )

        # All of the derivatives of phi have a common denominator, given by
        # (e X r).s0, where e is the rotation axis. Calculate this once, here.
        self._e_X_r = (self._setting_rotation * self._axis).cross(self._r)
        self._e_r_s0 = (self._e_X_r).dot(self._s0)

        # Note that e_r_s0 -> 0 when the rotation axis, beam vector and
        # relp are coplanar. This occurs when a reflection just touches
        # the Ewald sphere.
        #
        # There is a relationship between e_r_s0 and zeta_factor.
        # Uncommenting the code below shows that
        # s0.(e X r) = zeta * |s X s0|

        # from dials.algorithms.profile_model.gaussian_rs import zeta_factor
        # from libtbx.test_utils import approx_equal
        # s = matrix.col(reflections['s1'][0])
        # z = zeta_factor(axis[0], s0[0], s)
        # ss0 = (s.cross(matrix.col(s0[0]))).length()
        # assert approx_equal(e_r_s0[0], z * ss0)

        # catch small values of e_r_s0
        e_r_s0_mag = flex.abs(self._e_r_s0)
        try:
            assert flex.min(e_r_s0_mag) > 1.0e-6
        except AssertionError as e:
            imin = flex.min_index(e_r_s0_mag)
            print("(e X r).s0 too small:")
            print("for", (e_r_s0_mag <= 1.0e-6).count(True), "reflections")
            print("out of", len(e_r_s0_mag), "total")
            print("such as", reflections["miller_index"][imin])
            print("with scattering vector", reflections["s1"][imin])
            print("where r =", self._r[imin])
            print("e =", self._axis[imin])
            print("s0 =", self._s0[imin])
            print("this reflection forms angle with the equatorial plane " "normal:")
            vecn = (
                matrix.col(self._s0[imin])
                .cross(matrix.col(self._axis[imin]))
                .normalize()
            )
            print(matrix.col(reflections["s1"][imin]).accute_angle(vecn))
            raise e
コード例 #2
0
ファイル: prediction_parameters.py プロジェクト: dials/dials
  def _local_setup(self, reflections):
    """Setup additional attributes used in gradients calculation. These are
    specific to scans-type prediction parameterisations"""

    # Spindle rotation matrices for every reflection
    #R = self._axis.axis_and_angle_as_r3_rotation_matrix(phi)
    #R = flex.mat3_double(len(reflections))
    # NB for now use flex.vec3_double.rotate_around_origin each time I need the
    # rotation matrix R.

    # r is the reciprocal lattice vector, in the lab frame
    self._phi_calc = reflections['xyzcal.mm'].parts()[2]
    q = self._fixed_rotation * (self._UB * self._h)
    self._r = self._setting_rotation * q.rotate_around_origin(self._axis, self._phi_calc)

    # All of the derivatives of phi have a common denominator, given by
    # (e X r).s0, where e is the rotation axis. Calculate this once, here.
    self._e_X_r = (self._setting_rotation * self._axis).cross(self._r)
    self._e_r_s0 = (self._e_X_r).dot(self._s0)

    # Note that e_r_s0 -> 0 when the rotation axis, beam vector and
    # relp are coplanar. This occurs when a reflection just touches
    # the Ewald sphere.
    #
    # There is a relationship between e_r_s0 and zeta_factor.
    # Uncommenting the code below shows that
    # s0.(e X r) = zeta * |s X s0|

    #from dials.algorithms.profile_model.gaussian_rs import zeta_factor
    #from libtbx.test_utils import approx_equal
    #s = matrix.col(reflections['s1'][0])
    #z = zeta_factor(axis[0], s0[0], s)
    #ss0 = (s.cross(matrix.col(s0[0]))).length()
    #assert approx_equal(e_r_s0[0], z * ss0)

    # catch small values of e_r_s0
    e_r_s0_mag = flex.abs(self._e_r_s0)
    try:
      assert flex.min(e_r_s0_mag) > 1.e-6
    except AssertionError as e:
      imin = flex.min_index(e_r_s0_mag)
      print "(e X r).s0 too small:"
      print "for", (e_r_s0_mag <= 1.e-6).count(True), "reflections"
      print "out of", len(e_r_s0_mag), "total"
      print "such as", reflections['miller_index'][imin]
      print "with scattering vector", reflections['s1'][imin]
      print "where r =", self._r[imin]
      print "e =", self._axis[imin]
      print "s0 =", self._s0[imin]
      print ("this reflection forms angle with the equatorial plane "
             "normal:")
      vecn = matrix.col(self._s0[imin]).cross(matrix.col(self._axis[imin])).normalize()
      print matrix.col(reflections['s1'][imin]).accute_angle(vecn)
      raise e
    return
コード例 #3
0
    def choose_best_orientation_matrix(self, candidate_orientation_matrices):
        logger.info("*" * 80)
        logger.info("Selecting the best orientation matrix")
        logger.info("*" * 80)

        class CandidateInfo(libtbx.group_args):
            pass

        candidates = []

        params = copy.deepcopy(self.all_params)

        for icm, cm in enumerate(candidate_orientation_matrices):
            if icm >= self.params.basis_vector_combinations.max_refine:
                break
            # Index reflections in P1
            sel = self.reflections["id"] == -1
            refl = self.reflections.select(sel)
            experiments = self.experiment_list_for_crystal(cm)
            self.index_reflections(experiments, refl)
            indexed = refl.select(refl["id"] >= 0)
            indexed = indexed.select(indexed.get_flags(indexed.flags.indexed))

            # If target symmetry supplied, try to apply it.  Then, apply the change of basis to the reflections
            # indexed in P1 to the target setting
            if (
                self.params.stills.refine_candidates_with_known_symmetry
                and self.params.known_symmetry.space_group is not None
            ):
                new_crystal, cb_op_to_primitive = self._symmetry_handler.apply_symmetry(
                    cm
                )
                if new_crystal is None:
                    logger.info("Cannot convert to target symmetry, candidate %d", icm)
                    continue
                new_crystal = new_crystal.change_basis(
                    self._symmetry_handler.cb_op_primitive_inp
                )
                cm = new_crystal
                experiments = self.experiment_list_for_crystal(cm)

                if not cb_op_to_primitive.is_identity_op():
                    indexed["miller_index"] = cb_op_to_primitive.apply(
                        indexed["miller_index"]
                    )
                if self._symmetry_handler.cb_op_primitive_inp is not None:
                    indexed[
                        "miller_index"
                    ] = self._symmetry_handler.cb_op_primitive_inp.apply(
                        indexed["miller_index"]
                    )

            if params.indexing.stills.refine_all_candidates:
                try:
                    logger.info(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d initial outlier identification",
                        icm,
                    )
                    acceptance_flags = self.identify_outliers(
                        params, experiments, indexed
                    )
                    # create a new "indexed" list with outliers thrown out:
                    indexed = indexed.select(acceptance_flags)

                    logger.info(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d refinement before outlier rejection",
                        icm,
                    )
                    R = e_refine(
                        params=params,
                        experiments=experiments,
                        reflections=indexed,
                        graph_verbose=False,
                    )
                    ref_experiments = R.get_experiments()

                    # try to improve the outcome with a second round of outlier rejection post-initial refinement:
                    acceptance_flags = self.identify_outliers(
                        params, ref_experiments, indexed
                    )

                    # insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection
                    nv0 = NaveParameters(
                        params=params,
                        experiments=ref_experiments,
                        reflections=indexed,
                        refinery=R,
                        graph_verbose=False,
                    )
                    nv0()
                    acceptance_flags_nv0 = nv0.nv_acceptance_flags
                    indexed = indexed.select(acceptance_flags & acceptance_flags_nv0)

                    logger.info(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d after positional and delta-psi outlier rejection",
                        icm,
                    )
                    R = e_refine(
                        params=params,
                        experiments=ref_experiments,
                        reflections=indexed,
                        graph_verbose=False,
                    )
                    ref_experiments = R.get_experiments()

                    nv = NaveParameters(
                        params=params,
                        experiments=ref_experiments,
                        reflections=indexed,
                        refinery=R,
                        graph_verbose=False,
                    )
                    crystal_model = nv()
                    assert (
                        len(crystal_model) == 1
                    ), "$$$ stills_indexer::choose_best_orientation_matrix, Only one crystal at this stage"
                    crystal_model = crystal_model[0]

                    # Drop candidates that after refinement can no longer be converted to the known target space group
                    if (
                        not self.params.stills.refine_candidates_with_known_symmetry
                        and self.params.known_symmetry.space_group is not None
                    ):
                        (
                            new_crystal,
                            cb_op_to_primitive,
                        ) = self._symmetry_handler.apply_symmetry(crystal_model)
                        if new_crystal is None:
                            logger.info(
                                "P1 refinement yielded model diverged from target, candidate %d",
                                icm,
                            )
                            continue

                    rmsd, _ = calc_2D_rmsd_and_displacements(
                        R.predict_for_reflection_table(indexed)
                    )
                except Exception as e:
                    logger.info(
                        "Couldn't refine candidate %d, %s: %s",
                        icm,
                        e.__class__.__name__,
                        str(e),
                    )
                else:
                    logger.info(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d done",
                        icm,
                    )
                    candidates.append(
                        CandidateInfo(
                            crystal=crystal_model,
                            green_curve_area=nv.green_curve_area,
                            ewald_proximal_volume=nv.ewald_proximal_volume(),
                            n_indexed=len(indexed),
                            rmsd=rmsd,
                            indexed=indexed,
                            experiments=ref_experiments,
                        )
                    )
            else:
                from dials.algorithms.refinement.prediction.managed_predictors import (
                    ExperimentsPredictorFactory,
                )

                ref_predictor = ExperimentsPredictorFactory.from_experiments(
                    experiments,
                    force_stills=True,
                    spherical_relp=params.refinement.parameterisation.spherical_relp_model,
                )
                rmsd, _ = calc_2D_rmsd_and_displacements(ref_predictor(indexed))
                candidates.append(
                    CandidateInfo(
                        crystal=cm,
                        n_indexed=len(indexed),
                        rmsd=rmsd,
                        indexed=indexed,
                        experiments=experiments,
                    )
                )
        if len(candidates) == 0:
            raise DialsIndexError("No suitable indexing solution found")

        logger.info("**** ALL CANDIDATES:")
        for i, XX in enumerate(candidates):
            logger.info("\n****Candidate %d %s", i, XX)
            cc = XX.crystal
            if hasattr(cc, "get_half_mosaicity_deg"):
                logger.info(
                    "  half mosaicity %5.2f deg.", (cc.get_half_mosaicity_deg())
                )
                logger.info("  domain size %.0f Ang.", (cc.get_domain_size_ang()))
        logger.info("\n**** BEST CANDIDATE:")

        results = flex.double([c.rmsd for c in candidates])
        best = candidates[flex.min_index(results)]
        logger.info(best)

        if params.indexing.stills.refine_all_candidates:
            if best.rmsd > params.indexing.stills.rmsd_min_px:
                raise DialsIndexError("RMSD too high, %f" % best.rmsd)

            if len(candidates) > 1:
                for i in range(len(candidates)):
                    if i == flex.min_index(results):
                        continue
                    if best.ewald_proximal_volume > candidates[i].ewald_proximal_volume:
                        logger.info(
                            "Couldn't figure out which candidate is best; picked the one with the best RMSD."
                        )

        best.indexed["entering"] = flex.bool(best.n_indexed, False)

        return best.crystal, best.n_indexed
コード例 #4
0
def index_reflections_detail(debug, experiments,
                             reflections,
                             detector,
                             reciprocal_lattice_points1,
                             reciprocal_lattice_points2,
                             d_min=None,
                             tolerance=0.3,
                             verbosity=0):
  ''' overwrites base class index_reflections function and assigns spots to
     their corresponding experiment (wavelength)'''

  print("\n\n special indexing \n\n")
  # initialize each reflections miller index to 0,0,0
  reflections['miller_index'] = flex.miller_index(len(reflections), (0,0,0))

  # for two wavelengths
  assert len(experiments) == 3
  low_energy = 0   # 0th experiment is low-energy
  high_energy = 1  # 1st experiment is high-energ
  avg_energy = 2  # 2nd experiment is average energy (for spot overlaps)

  # code to check input orientation matrix
  # get predicted reflections based on basis vectors
  pred = False
  if pred ==True:
    experiments[0].crystal._ML_half_mosaicity_deg = .2
    experiments[0].crystal._ML_domain_size_ang = 1000
    predicted = flex.reflection_table.from_predictions_multi(experiments[0:2])
    predicted.as_pickle('test')

  inside_resolution_limit = flex.bool(len(reflections), True)
  if d_min is not None:
    d_spacings = 1/reflections['rlp'].norms()
    inside_resolution_limit &= (d_spacings > d_min)

  # boolean array, all yet-to-be spots that are bound by the resolution
  sel = inside_resolution_limit & (reflections['id'] == -1)
  # array of indices of the reflections
  isel = sel.iselection()
# I believe .select( isel) is same as .select( sel)
  rlps0 = reciprocal_lattice_points1.select(isel)  # low-energy beam lp vectors calculated in two_color_grid_search
  rlps1 = reciprocal_lattice_points2.select(isel)  # high-energy beam lps!
  refs = reflections.select(isel)


  rlps = (rlps0, rlps1)  # put em in a tuple ?
  rlp_norms = []
  hkl_ints = []
  norms = []
  diffs = []
  c1 = experiments.crystals()[0]
  assert( len(experiments.crystals()) == 1 )  # 3 beams but only 1 crystal!
  A = matrix.sqr( experiments.crystals()[0].get_A())
  A_inv = A.inverse()

  # confusing variable names, but for each set of R.L.P.s.
  # (one for the high and one for the low energy beam)
  # find the distance to the nearest integer hkl
  for rlp in range(len(rlps)):
    hkl_float = tuple(A_inv) * rlps[rlp]
    hkl_int = hkl_float.iround()
    differences = hkl_float - hkl_int.as_vec3_double()
    diffs.append(differences)
    norms.append(differences.norms())
    hkl_ints.append(hkl_int)

  n_rejects = 0
  for i_hkl in range(hkl_int.size()):
    n = flex.double([norms[j][i_hkl]
                     for j in range(len(rlps))])
    potential_hkls = [hkl_ints[j][i_hkl]
                      for j in range(len(rlps))]
    potential_rlps = [rlps[j][i_hkl]
                      for j in range(len(rlps))]
    if norms[0][i_hkl]>norms[1][i_hkl]:
      i_best_lattice = high_energy
      i_best_rlp = high_energy
    elif norms[0][i_hkl]<norms[1][i_hkl]:
      i_best_lattice = low_energy
      i_best_rlp = low_energy
    else:
      i_best_lattice = flex.min_index(n)
      i_best_rlp = flex.min_index(n)
    if n[i_best_lattice] > tolerance:
      n_rejects += 1
      continue
    miller_index = potential_hkls[i_best_lattice]
    reciprocal_lattice_points = potential_rlps[i_best_rlp]
    i_ref = isel[i_hkl]
    reflections['miller_index'][i_ref] = miller_index
    reflections['id'][i_ref] = i_best_lattice
    reflections['rlp'][i_ref] = reciprocal_lattice_points

  # if more than one spot can be assigned the same miller index then choose
  # the closest one
  miller_indices = reflections['miller_index'].select(isel)
  rlp_norms = reflections['rlp'].select(isel).norms()
  same=0
  for i_hkl, hkl in enumerate(miller_indices):
    if hkl == (0,0,0): continue
    iselection = (miller_indices == hkl).iselection()
    if len(iselection) > 1:
      for i in iselection:
        for j in iselection:
          if j <= i: continue
          crystal_i = reflections['id'][isel[i]]
          crystal_j = reflections['id'][isel[j]]
          if crystal_i != crystal_j:
            continue
          elif (crystal_i == -1 or crystal_j ==-1) or (crystal_i == -2 or crystal_j == -2):
            continue
          elif crystal_i ==2 or crystal_j ==2:
            continue
            #print hkl_ints[crystal_i][i], hkl_ints[crystal_j][j], crystal_i
          assert hkl_ints[crystal_j][j] == hkl_ints[crystal_i][i]
          same +=1
          if rlp_norms[i] < rlp_norms[j]:
            reflections['id'][isel[i]] = high_energy
            reflections['id'][isel[j]] = low_energy
          elif rlp_norms[j] < rlp_norms[i]:
            reflections['id'][isel[j]] = high_energy
            reflections['id'][isel[i]] = low_energy

  #calculate Bragg angles
  s0 = col(experiments[2].beam.get_s0())
  lambda_0 = experiments[0].beam.get_wavelength()
  lambda_1 = experiments[1].beam.get_wavelength()
  det_dist = experiments[0].detector[0].get_distance()
  px_size_mm = experiments[0].detector[0].get_pixel_size()[0]
  spot_px_coords=reflections['xyzobs.px.value'].select(isel)
  px_x,px_y,px_z = spot_px_coords.parts()
  res  = []
  for i in range(len(spot_px_coords)):
    res.append(detector[0].get_resolution_at_pixel(s0, (px_x[i], px_y[i])))
  # predicted spot distance  based on the resultion of the observed spot at either wavelength 1 or 2
  theta_1a = [math.asin(lambda_0/(2*res[i])) for i in range(len(res))]
  theta_2a = [math.asin(lambda_1/(2*res[i])) for i in range(len(res))]
  px_dist = [(math.tan(2*theta_1a[i])*det_dist-math.tan(2*theta_2a[i])*det_dist)/px_size_mm for i in range(len(spot_px_coords))]
  # first calculate distance from stop centroid to farthest valid pixel (determine max spot radius)
  # coords of farthest valid pixel
  # if the predicted spot distance at either wavelength is less than 2x distance described above than the spot is considered "overlapped" and assigned to experiment 2 at average wavelength

  valid = MaskCode.Valid | MaskCode.Foreground

  for i in range(len(refs)):
    if reflections['miller_index'][isel[i]]==(0,0,0): continue
    sb = reflections['shoebox'][isel[i]]
    bbox = sb.bbox
    mask = sb.mask
    centroid = col(reflections['xyzobs.px.value'][isel[i]][0:2])
    x1, x2, y1, y2, z1, z2 = bbox

    longest = 0
    for y in range(y1, y2):
      for x in range(x1, x2):
        if mask[z1,y-y1,x-x1] != valid:
          continue
        v = col([x,y])
        dist = (centroid -v).length()
        if dist > longest:
          longest = dist
    #print "Miller Index", reflections['miller_index'][i], "longest", longest,"predicted distance", px_dist_1[i]
    if 2*longest > px_dist[i]:
      avg_rlp0 = reflections['rlp'][isel[i]][0]*experiments[reflections['id'][isel[i]]].beam.get_wavelength()/experiments[2].beam.get_wavelength()
      avg_rlp1 = reflections['rlp'][isel[i]][1]*experiments[reflections['id'][isel[i]]].beam.get_wavelength()/experiments[2].beam.get_wavelength()
      avg_rlp2 = reflections['rlp'][isel[i]][2]*experiments[reflections['id'][isel[i]]].beam.get_wavelength()/experiments[2].beam.get_wavelength()
      reflections['id'][isel[i]] = avg_energy
      reflections['rlp'][isel[i]] = (avg_rlp0, avg_rlp1, avg_rlp2)

  # check for repeated hkl in experiment 2, and if experiment 2 has same hkl as experiment 0 or 1 the spot with the largest variance is assigned to experiment -2 and the remaining spot is assigned to experiment 2

  for i_hkl, hkl in enumerate(miller_indices):
    if hkl == (0,0,0): continue
    iselection = (miller_indices == hkl).iselection()
    if len(iselection) > 1:
      for i in iselection:
        for j in iselection:
          if j <= i: continue
          crystal_i = reflections['id'][isel[i]]
          crystal_j = reflections['id'][isel[j]]
          if (crystal_i == -1 or crystal_j ==-1) or (crystal_i == -2 or crystal_j == -2):
            continue
          # control to only filter for experient 2; duplicate miller indices in 0 and 1 are resolved above
          if (crystal_i == 1 and crystal_j == 0) or (crystal_i == 0 and crystal_j ==1):
            continue

          if (crystal_i ==2 or crystal_j ==2) and (reflections['xyzobs.px.variance'][isel[i]]<reflections['xyzobs.px.variance'][isel[j]]):
              reflections['id'][isel[j]] = -2
              reflections['id'][isel[i]] = avg_energy
          elif (crystal_i ==2 or crystal_j ==2) and (reflections['xyzobs.px.variance'][isel[i]]>reflections['xyzobs.px.variance'][isel[j]]):
              reflections['id'][isel[i]] = -2
              reflections['id'][isel[j]] = avg_energy
          if (crystal_i ==2 and crystal_j ==2) and (reflections['xyzobs.px.variance'][isel[i]]<reflections['xyzobs.px.variance'][isel[j]]):
              reflections['id'][isel[j]] = -2
              reflections['id'][isel[i]] = avg_energy
          elif (crystal_i ==2 and crystal_j ==2) and (reflections['xyzobs.px.variance'][isel[i]]>reflections['xyzobs.px.variance'][isel[j]]):
              reflections['id'][isel[i]] = -2
              reflections['id'][isel[j]] = avg_energy

  # check that each experiment list does not contain duplicate miller indices
  exp_0 = reflections.select(reflections['id']==0)
  exp_1 = reflections.select(reflections['id']==1)
  exp_2 = reflections.select(reflections['id']==2)
コード例 #5
0
ファイル: stills_indexer.py プロジェクト: kek-pf-mx/dials
    def choose_best_orientation_matrix(self, candidate_orientation_matrices):
        from dxtbx.model.experiment_list import Experiment, ExperimentList
        import copy

        logger.info('*' * 80)
        logger.info('Selecting the best orientation matrix')
        logger.info('*' * 80)

        from libtbx import group_args

        class candidate_info(group_args):
            pass

        candidates = []

        params = copy.deepcopy(self.all_params)

        n_cand = len(candidate_orientation_matrices)

        for icm, cm in enumerate(candidate_orientation_matrices):
            # Index reflections in P1
            sel = ((self.reflections['id'] == -1))
            refl = self.reflections.select(sel)
            experiments = self.experiment_list_for_crystal(cm)
            self.index_reflections(experiments, refl)
            indexed = refl.select(refl['id'] >= 0)
            indexed = indexed.select(indexed.get_flags(indexed.flags.indexed))

            # If target symmetry supplied, try to apply it.  Then, apply the change of basis to the reflections
            # indexed in P1 to the target setting
            if self.params.stills.refine_candidates_with_known_symmetry and self.params.known_symmetry.space_group is not None:
                target_space_group = self.target_symmetry_primitive.space_group(
                )
                new_crystal, cb_op_to_primitive = self.apply_symmetry(
                    cm, target_space_group)
                if new_crystal is None:
                    print(
                        "Cannot convert to target symmetry, candidate %d/%d" %
                        (icm, n_cand))
                    continue
                new_crystal = new_crystal.change_basis(
                    self.cb_op_primitive_inp)
                cm = candidate_orientation_matrices[icm] = new_crystal
                experiments = self.experiment_list_for_crystal(cm)

                if not cb_op_to_primitive.is_identity_op():
                    indexed['miller_index'] = cb_op_to_primitive.apply(
                        indexed['miller_index'])
                if self.cb_op_primitive_inp is not None:
                    indexed['miller_index'] = self.cb_op_primitive_inp.apply(
                        indexed['miller_index'])

            if params.indexing.stills.refine_all_candidates:
                try:
                    print(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d/%d initial outlier identification"
                        % (icm, n_cand))
                    acceptance_flags = self.identify_outliers(
                        params, experiments, indexed)
                    #create a new "indexed" list with outliers thrown out:
                    indexed = indexed.select(acceptance_flags)

                    print(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d/%d refinement before outlier rejection"
                        % (icm, n_cand))
                    R = e_refine(params=params,
                                 experiments=experiments,
                                 reflections=indexed,
                                 graph_verbose=False)
                    ref_experiments = R.get_experiments()

                    # try to improve the outcome with a second round of outlier rejection post-initial refinement:
                    acceptance_flags = self.identify_outliers(
                        params, ref_experiments, indexed)

                    # insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection
                    nv0 = nave_parameters(params=params,
                                          experiments=ref_experiments,
                                          reflections=indexed,
                                          refinery=R,
                                          graph_verbose=False)
                    crystal_model_nv0 = nv0()
                    acceptance_flags_nv0 = nv0.nv_acceptance_flags
                    indexed = indexed.select(acceptance_flags
                                             & acceptance_flags_nv0)

                    print(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d/%d after positional and delta-psi outlier rejection"
                        % (icm, n_cand))
                    R = e_refine(params=params,
                                 experiments=ref_experiments,
                                 reflections=indexed,
                                 graph_verbose=False)
                    ref_experiments = R.get_experiments()

                    nv = nave_parameters(params=params,
                                         experiments=ref_experiments,
                                         reflections=indexed,
                                         refinery=R,
                                         graph_verbose=False)
                    crystal_model = nv()

                    # Drop candidates that after refinement can no longer be converted to the known target space group
                    if not self.params.stills.refine_candidates_with_known_symmetry and self.params.known_symmetry.space_group is not None:
                        target_space_group = self.target_symmetry_primitive.space_group(
                        )
                        new_crystal, cb_op_to_primitive = self.apply_symmetry(
                            crystal_model, target_space_group)
                        if new_crystal is None:
                            print(
                                "P1 refinement yielded model diverged from target, candidate %d/%d"
                                % (icm, n_cand))
                            continue

                    rmsd, _ = calc_2D_rmsd_and_displacements(
                        R.predict_for_reflection_table(indexed))
                except Exception as e:
                    print("Couldn't refine candiate %d/%d, %s" %
                          (icm, n_cand, str(e)))
                else:
                    print(
                        "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d/%d done"
                        % (icm, n_cand))
                    candidates.append(
                        candidate_info(
                            crystal=crystal_model,
                            green_curve_area=nv.green_curve_area,
                            ewald_proximal_volume=nv.ewald_proximal_volume(),
                            n_indexed=len(indexed),
                            rmsd=rmsd,
                            indexed=indexed,
                            experiments=ref_experiments))
            else:
                from dials.algorithms.refinement.prediction import ExperimentsPredictor
                ref_predictor = ExperimentsPredictor(
                    experiments,
                    force_stills=True,
                    spherical_relp=params.refinement.parameterisation.
                    spherical_relp_model)
                rmsd, _ = calc_2D_rmsd_and_displacements(
                    ref_predictor(indexed))
                candidates.append(
                    candidate_info(crystal=cm,
                                   n_indexed=len(indexed),
                                   rmsd=rmsd,
                                   indexed=indexed,
                                   experiments=experiments))
        if len(candidates) == 0:
            raise Sorry("No suitable indexing solution found")

        print("**** ALL CANDIDATES:")
        for i, XX in enumerate(candidates):
            print("\n****Candidate %d" % i, XX)
            cc = XX.crystal
            if hasattr(cc, 'get_half_mosaicity_deg'):
                print("  half mosaicity %5.2f deg." %
                      (cc.get_half_mosaicity_deg()))
                print("  domain size %.0f Ang." % (cc.get_domain_size_ang()))
        print("\n**** BEST CANDIDATE:")

        results = flex.double([c.rmsd for c in candidates])
        best = candidates[flex.min_index(results)]
        print(best)

        if params.indexing.stills.refine_all_candidates:
            if best.rmsd > params.indexing.stills.rmsd_min_px:
                raise Sorry("RMSD too high, %f" % best.rmsd)

            if best.ewald_proximal_volume > params.indexing.stills.ewald_proximal_volume_max:
                raise Sorry("Ewald proximity volume too high, %f" %
                            best.ewald_proximal_volume)

            if len(candidates) > 1:
                for i in xrange(len(candidates)):
                    if i == flex.min_index(results):
                        continue
                    if best.ewald_proximal_volume > candidates[
                            i].ewald_proximal_volume:
                        print(
                            "Couldn't figure out which candidate is best; picked the one with the best RMSD."
                        )

        best.indexed['entering'] = flex.bool(best.n_indexed, False)

        return best.crystal, best.n_indexed
コード例 #6
0
  def _get_gradients_core(self, reflections, D, s0, U, B, axis, fixed_rotation, callback=None):
    """Calculate gradients of the prediction formula with respect to
    each of the parameters of the contained models, for reflection h
    that reflects at rotation angle phi with scattering vector s that
    intersects panel panel_id. That is, calculate dX/dp, dY/dp and
    dphi/dp"""

    # Spindle rotation matrices for every reflection
    #R = self._axis.axis_and_angle_as_r3_rotation_matrix(phi)
    #R = flex.mat3_double(len(reflections))
    # NB for now use flex.vec3_double.rotate_around_origin each time I need the
    # rotation matrix R.

    self._axis = axis
    self._fixed_rotation = fixed_rotation
    self._s0 = s0

    # pv is the 'projection vector' for the ray along s1.
    self._D = D
    self._s1 = reflections['s1']
    self._pv = D * self._s1

    # also need quantities derived from pv, precalculated for efficiency
    u, v, w = self._pv.parts()
    self._w_inv = 1/w
    self._u_w_inv = u * self._w_inv
    self._v_w_inv = v * self._w_inv

    self._UB = U * B
    self._U = U
    self._B = B

    # r is the reciprocal lattice vector, in the lab frame
    self._h = reflections['miller_index'].as_vec3_double()
    self._phi_calc = reflections['xyzcal.mm'].parts()[2]
    self._r = (self._fixed_rotation * (self._UB * self._h)).rotate_around_origin(self._axis, self._phi_calc)

    # All of the derivatives of phi have a common denominator, given by
    # (e X r).s0, where e is the rotation axis. Calculate this once, here.
    self._e_X_r = self._axis.cross(self._r)
    self._e_r_s0 = (self._e_X_r).dot(self._s0)

    # Note that e_r_s0 -> 0 when the rotation axis, beam vector and
    # relp are coplanar. This occurs when a reflection just touches
    # the Ewald sphere.
    #
    # There is a relationship between e_r_s0 and zeta_factor.
    # Uncommenting the code below shows that
    # s0.(e X r) = zeta * |s X s0|

    #from dials.algorithms.profile_model.gaussian_rs import zeta_factor
    #from libtbx.test_utils import approx_equal
    #s = matrix.col(reflections['s1'][0])
    #z = zeta_factor(axis[0], s0[0], s)
    #ss0 = (s.cross(matrix.col(s0[0]))).length()
    #assert approx_equal(e_r_s0[0], z * ss0)

    # catch small values of e_r_s0
    e_r_s0_mag = flex.abs(self._e_r_s0)
    try:
      assert flex.min(e_r_s0_mag) > 1.e-6
    except AssertionError as e:
      imin = flex.min_index(e_r_s0_mag)
      print "(e X r).s0 too small:"
      print "for", (e_r_s0_mag <= 1.e-6).count(True), "reflections"
      print "out of", len(e_r_s0_mag), "total"
      print "such as", reflections['miller_index'][imin]
      print "with scattering vector", reflections['s1'][imin]
      print "where r =", self._r[imin]
      print "e =", self._axis[imin]
      print "s0 =", self._s0[imin]
      print ("this reflection forms angle with the equatorial plane "
             "normal:")
      vecn = matrix.col(self._s0[imin]).cross(matrix.col(self._axis[imin])).normalize()
      print matrix.col(reflections['s1'][imin]).accute_angle(vecn)
      raise e

    # Set up empty list in which to store gradients
    m = len(reflections)
    results = []

    # determine experiment to indices mappings once, here
    experiment_to_idx = []
    for iexp, exp in enumerate(self._experiments):

      sel = reflections['id'] == iexp
      isel = sel.iselection()
      experiment_to_idx.append(isel)

    # reset a pointer to the parameter number
    self._iparam = 0

    ### Work through the parameterisations, calculating their contributions
    ### to derivatives d[pv]/dp and d[phi]/dp

    # loop over the detector parameterisations
    for dp in self._detector_parameterisations:

      # Determine (sub)set of reflections affected by this parameterisation
      isel = flex.size_t()
      for exp_id in dp.get_experiment_ids():
        isel.extend(experiment_to_idx[exp_id])

      # Access the detector model being parameterised
      detector = dp.get_model()

      # Get panel numbers of the affected reflections
      panel = reflections['panel'].select(isel)

      # Extend derivative vectors for this detector parameterisation
      results = self._extend_gradient_vectors(results, m, dp.num_free(),
        keys=self._grad_names)

      # loop through the panels in this detector
      for panel_id, _ in enumerate(exp.detector):

        # get the right subset of array indices to set for this panel
        sub_isel = isel.select(panel == panel_id)
        if len(sub_isel) == 0:
          # if no reflections intersect this panel, skip calculation
          continue
        sub_pv = self._pv.select(sub_isel)
        sub_D = self._D.select(sub_isel)
        dpv_ddet_p = self._detector_derivatives(dp, sub_pv, sub_D, panel_id)

        # convert to dX/dp, dY/dp and assign the elements of the vectors
        # corresponding to this experiment and panel
        sub_w_inv = self._w_inv.select(sub_isel)
        sub_u_w_inv = self._u_w_inv.select(sub_isel)
        sub_v_w_inv = self._v_w_inv.select(sub_isel)
        dX_ddet_p, dY_ddet_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
          sub_w_inv, sub_u_w_inv, sub_v_w_inv, dpv_ddet_p)

        # use a local parameter index pointer because we set all derivatives
        # for this panel before moving on to the next
        iparam = self._iparam
        for dX, dY in zip(dX_ddet_p, dY_ddet_p):
          if dX is not None:
            results[iparam]['dX_dp'].set_selected(sub_isel, dX)
          if dY is not None:
            results[iparam]['dY_dp'].set_selected(sub_isel, dY)
          # increment the local parameter index pointer
          iparam += 1

      if callback is not None:
        iparam = self._iparam
        for i in range(dp.num_free()):
          results[iparam] = callback(results[iparam])
          iparam += 1

      # increment the parameter index pointer to the last detector parameter
      self._iparam += dp.num_free()

    # loop over the beam parameterisations
    for bp in self._beam_parameterisations:

      # Determine (sub)set of reflections affected by this parameterisation
      isel = flex.size_t()
      for exp_id in bp.get_experiment_ids():
        isel.extend(experiment_to_idx[exp_id])

      # Extend derivative vectors for this beam parameterisation
      results = self._extend_gradient_vectors(results, m, bp.num_free(),
        keys=self._grad_names)

      if len(isel) == 0:
        # if no reflections are in this experiment, skip calculation
        self._iparam += bp.num_free()
        continue

      # Get required data from those reflections
      r = self._r.select(isel)
      e_X_r = self._e_X_r.select(isel)
      e_r_s0 = self._e_r_s0.select(isel)
      D = self._D.select(isel)

      w_inv = self._w_inv.select(isel)
      u_w_inv = self._u_w_inv.select(isel)
      v_w_inv = self._v_w_inv.select(isel)

      dpv_dbeam_p, dphi_dbeam_p = self._beam_derivatives(bp, r, e_X_r, e_r_s0, D)

      # convert to dX/dp, dY/dp and assign the elements of the vectors
      # corresponding to this experiment
      dX_dbeam_p, dY_dbeam_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
        w_inv, u_w_inv, v_w_inv, dpv_dbeam_p)
      for dX, dY, dphi in zip(dX_dbeam_p, dY_dbeam_p, dphi_dbeam_p):
        results[self._iparam][self._grad_names[0]].set_selected(isel, dX)
        results[self._iparam][self._grad_names[1]].set_selected(isel, dY)
        results[self._iparam][self._grad_names[2]].set_selected(isel, dphi)

        if callback is not None:
          results[self._iparam] = callback(results[self._iparam])
        # increment the parameter index pointer
        self._iparam += 1

    # loop over the crystal orientation parameterisations
    for xlop in self._xl_orientation_parameterisations:

      # Determine (sub)set of reflections affected by this parameterisation
      isel = flex.size_t()
      for exp_id in xlop.get_experiment_ids():
        isel.extend(experiment_to_idx[exp_id])

      # Extend derivative vectors for this crystal orientation parameterisation
      results = self._extend_gradient_vectors(results, m, xlop.num_free(),
        keys=self._grad_names)

      if len(isel) == 0:
        # if no reflections are in this experiment, skip calculation
        self._iparam += xlop.num_free()
        continue

      # Get required data from those reflections
      axis = self._axis.select(isel)
      fixed_rotation = self._fixed_rotation.select(isel)
      phi_calc = self._phi_calc.select(isel)
      h = self._h.select(isel)
      s1 = self._s1.select(isel)
      e_X_r = self._e_X_r.select(isel)
      e_r_s0 = self._e_r_s0.select(isel)
      B = self._B.select(isel)
      D = self._D.select(isel)

      w_inv = self._w_inv.select(isel)
      u_w_inv = self._u_w_inv.select(isel)
      v_w_inv = self._v_w_inv.select(isel)

      # get derivatives of the U matrix wrt the parameters
      dU_dxlo_p = [reflections["dU_dp{0}".format(i)].select(isel) \
                   for i in range(xlop.num_free())]
      dpv_dxlo_p, dphi_dxlo_p = self._xl_orientation_derivatives(
        dU_dxlo_p, axis, fixed_rotation, phi_calc, h, s1, e_X_r, e_r_s0, B, D)

      # convert to dX/dp, dY/dp and assign the elements of the vectors
      # corresponding to this experiment
      dX_dxlo_p, dY_dxlo_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
        w_inv, u_w_inv, v_w_inv, dpv_dxlo_p)
      for dX, dY, dphi in zip(dX_dxlo_p, dY_dxlo_p, dphi_dxlo_p):
        results[self._iparam][self._grad_names[0]].set_selected(isel, dX)
        results[self._iparam][self._grad_names[1]].set_selected(isel, dY)
        results[self._iparam][self._grad_names[2]].set_selected(isel, dphi)
        if callback is not None:
          results[self._iparam] = callback(results[self._iparam])
        # increment the parameter index pointer
        self._iparam += 1

    # loop over the crystal unit cell parameterisations
    for xlucp in self._xl_unit_cell_parameterisations:

      # Determine (sub)set of reflections affected by this parameterisation
      isel = flex.size_t()
      for exp_id in xlucp.get_experiment_ids():
        isel.extend(experiment_to_idx[exp_id])

      # Extend derivative vectors for this crystal unit cell parameterisation
      results = self._extend_gradient_vectors(results, m, xlucp.num_free(),
        keys=self._grad_names)

      if len(isel) == 0:
        # if no reflections are in this experiment, skip calculation
        self._iparam += xlucp.num_free()
        continue

      # Get required data from those reflections
      axis = self._axis.select(isel)
      fixed_rotation = self._fixed_rotation.select(isel)
      phi_calc = self._phi_calc.select(isel)
      h = self._h.select(isel)
      s1 = self._s1.select(isel)
      e_X_r = self._e_X_r.select(isel)
      e_r_s0 = self._e_r_s0.select(isel)
      U = self._U.select(isel)
      D = self._D.select(isel)

      w_inv = self._w_inv.select(isel)
      u_w_inv = self._u_w_inv.select(isel)
      v_w_inv = self._v_w_inv.select(isel)

      dB_dxluc_p = [reflections["dB_dp{0}".format(i)].select(isel) \
                   for i in range(xlucp.num_free())]
      dpv_dxluc_p, dphi_dxluc_p =  self._xl_unit_cell_derivatives(
        dB_dxluc_p, axis, fixed_rotation, phi_calc, h, s1, e_X_r, e_r_s0, U, D)

      # convert to dX/dp, dY/dp and assign the elements of the vectors
      # corresponding to this experiment
      dX_dxluc_p, dY_dxluc_p = self._calc_dX_dp_and_dY_dp_from_dpv_dp(
        w_inv, u_w_inv, v_w_inv, dpv_dxluc_p)
      for dX, dY, dphi in zip(dX_dxluc_p, dY_dxluc_p, dphi_dxluc_p):
        results[self._iparam][self._grad_names[0]].set_selected(isel, dX)
        results[self._iparam][self._grad_names[1]].set_selected(isel, dY)
        results[self._iparam][self._grad_names[2]].set_selected(isel, dphi)
        if callback is not None:
          results[self._iparam] = callback(results[self._iparam])
        # increment the parameter index pointer
        self._iparam += 1

    return results
コード例 #7
0
ファイル: stills_indexer.py プロジェクト: biochem-fan/dials
  def choose_best_orientation_matrix(self, candidate_orientation_matrices):
    from dxtbx.model.experiment.experiment_list import Experiment, ExperimentList
    from logging import info
    import copy

    info('*' * 80)
    info('Selecting the best orientation matrix')
    info('*' * 80)

    from libtbx import group_args
    class candidate_info(group_args):
      pass
    candidates = []

    params = copy.deepcopy(self.all_params)

    for icm,cm in enumerate(candidate_orientation_matrices):
      sel = ((self.reflections['id'] == -1))
             #(1/self.reflections['rlp'].norms() > self.d_min))
      refl = self.reflections.select(sel)
      experiments = self.experiment_list_for_crystal(cm)
      self.index_reflections(experiments, refl)
      indexed = refl.select(refl['id'] >= 0)
      indexed = indexed.select(indexed.get_flags(indexed.flags.indexed))

      print "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d initial outlier identification"%icm
      acceptance_flags = self.identify_outliers(params, experiments, indexed)
      #create a new "indexed" list with outliers thrown out:
      indexed = indexed.select(acceptance_flags)

      print "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d refinement before outlier rejection"%icm
      R = e_refine(params = params, experiments=experiments, reflections=indexed, graph_verbose=False)
      ref_experiments = R.get_experiments()

      # try to improve the outcome with a second round of outlier rejection post-initial refinement:
      acceptance_flags = self.identify_outliers(params, ref_experiments, indexed)

      # insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection
      nv0 = nave_parameters(params = params, experiments=ref_experiments, reflections=indexed, refinery=R, graph_verbose=False)
      crystal_model_nv0 = nv0()
      acceptance_flags_nv0 = nv0.nv_acceptance_flags
      indexed = indexed.select(acceptance_flags & acceptance_flags_nv0)

      print "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d after positional and delta-psi outlier rejection"%icm
      R = e_refine(params = params, experiments=ref_experiments, reflections=indexed, graph_verbose=False)
      ref_experiments = R.get_experiments()

      nv = nave_parameters(params = params, experiments=ref_experiments, reflections=indexed, refinery=R, graph_verbose=False)
      crystal_model = nv()

      rmsd, _ = calc_2D_rmsd_and_displacements(R.predict_for_reflection_table(indexed))

      print "$$$ stills_indexer::choose_best_orientation_matrix, candidate %d done"%icm
      candidates.append(candidate_info(crystal = crystal_model,
                                       green_curve_area = nv.green_curve_area,
                                       ewald_proximal_volume = nv.ewald_proximal_volume(),
                                       n_indexed = len(indexed),
                                       rmsd = rmsd,
                                       indexed = indexed,
                                       experiments = ref_experiments))

    if len(candidates) == 0:
      raise Sorry("No suitable indexing solution found")

    print "**** ALL CANDIDATES:"
    for i,XX in enumerate(candidates):
      print "\n****Candidate %d"%i,XX
      cc = XX.crystal
      print "  half mosaicity %5.2f deg."%(cc._ML_half_mosaicity_deg)
      print "  domain size %.0f Ang."%(cc._ML_domain_size_ang)
    print "\n**** BEST CANDIDATE:"

    results = flex.double([c.rmsd for c in candidates])
    best = candidates[flex.min_index(results)]
    print best

    if best.rmsd > 1.5:
      raise Sorry ("RMSD too high, %f" %rmsd)

    if best.ewald_proximal_volume > 0.0015:
      raise Sorry ("Ewald proximity volume too high, %f"%best.ewald_proximal_volume)

    if len(candidates) > 1:
      for i in xrange(len(candidates)):
        if i == flex.min_index(results):
          continue
        if best.ewald_proximal_volume > candidates[i].ewald_proximal_volume:
          print "Couldn't figure out which candidate is best; picked the one with the best RMSD."

    best.indexed['entering'] = flex.bool(best.n_indexed, False)

    self._best_indexed = best.indexed
    return best.crystal, best.n_indexed
コード例 #8
0
  def test_for_reference(self):
    from dials.algorithms.integration import ProfileFittingReciprocalSpace
    from dials.array_family import flex
    from dials.algorithms.shoebox import MaskCode
    from dials.algorithms.statistics import \
      kolmogorov_smirnov_test_standard_normal
    from math import erf, sqrt, pi
    from copy import deepcopy
    from dials.algorithms.simulation.reciprocal_space import Simulator
    from os.path import basename

    # Integrate
    integration = ProfileFittingReciprocalSpace(
      grid_size=4,
      threshold=0.00,
      frame_interval=100,
      n_sigma=5,
      mask_n_sigma=3,
      sigma_b=0.024 * pi / 180.0,
      sigma_m=0.044 * pi / 180.0
    )

    # Integrate the reference profiles
    integration(self.experiment, self.reference)

    p = integration.learner.locate().profile(0)
    m = integration.learner.locate().mask(0)

    locator = integration.learner.locate()

    cor = locator.correlations()
    for j in range(cor.all()[0]):
      print ' '.join([str(cor[j,i]) for i in range(cor.all()[1])])
    #exit(0)
    #from matplotlib import pylab
    #pylab.imshow(cor.as_numpy_array(), interpolation='none', vmin=-1, vmax=1)
    #pylab.show()


    #n = locator.size()
    #for i in range(n):
      #c = locator.coord(i)
      #p = locator.profile(i)
      #vmax = flex.max(p)
      #from matplotlib import pylab
      #for j in range(9):
        #pylab.subplot(3, 3, j+1)
        #pylab.imshow(p.as_numpy_array()[j], vmin=0, vmax=vmax,
        #interpolation='none')
      #pylab.show()

    #print "NRef: ", n
    #x = []
    #y = []
    #for i in range(n):
      #c = locator.coord(i)
      #x.append(c[0])
      #y.append(c[1])
    #from matplotlib import pylab
    #pylab.scatter(x,y)
    #pylab.show()

    #exit(0)
    import numpy
    #pmax = flex.max(p)
    #scale = 100 / pmax
    #print "Scale: ", 100 / pmax
    #p = p.as_numpy_array() *100 / pmax
    #p = p.astype(numpy.int)
    #print p
    #print m.as_numpy_array()

    # Check the reference profiles and spots are ok
    #self.check_profiles(integration.learner)

    # Make sure background is zero
    profiles = self.reference['rs_shoebox']
    eps = 1e-7
    for p in profiles:
      assert(abs(flex.sum(p.background) - 0) < eps)
    print 'OK'

    # Only select variances greater than zero
    mask = self.reference.get_flags(self.reference.flags.integrated)
    I_cal = self.reference['intensity.sum.value']
    I_var = self.reference['intensity.sum.variance']
    B_sim = self.reference['background.sim'].as_double()
    I_sim = self.reference['intensity.sim'].as_double()
    I_exp = self.reference['intensity.exp']
    P_cor = self.reference['profile.correlation']
    X_pos, Y_pos, Z_pos = self.reference['xyzcal.px'].parts()
    I_cal = I_cal.select(mask)
    I_var = I_var.select(mask)
    I_sim = I_sim.select(mask)
    I_exp = I_exp.select(mask)
    P_cor = P_cor.select(mask)

    max_ind = flex.max_index(I_cal)
    max_I = I_cal[max_ind]
    max_P = self.reference[max_ind]['rs_shoebox'].data
    max_C = self.reference[max_ind]['xyzcal.px']
    max_S = self.reference[max_ind]['shoebox'].data


    min_ind = flex.min_index(P_cor)
    min_I = I_cal[min_ind]
    min_P = self.reference[min_ind]['rs_shoebox'].data
    min_C = self.reference[min_ind]['xyzcal.px']
    min_S = self.reference[min_ind]['shoebox'].data

    ##for k in range(max_S.all()[0]):
    #if False:
      #for j in range(max_S.all()[1]):
        #for i in range(max_S.all()[2]):
          #max_S[k,j,i] = 0
          #if (abs(i - max_S.all()[2] // 2) < 2 and
              #abs(j - max_S.all()[1] // 2) < 2 and
              #abs(k - max_S.all()[0] // 2) < 2):
            #max_S[k,j,i] = 100

    #p = max_P.as_numpy_array() * 100 / flex.max(max_P)
    #p = p.astype(numpy.int)
    #print p

    #from dials.scratch.jmp.misc.test_transform import test_transform
    #grid_size = 4
    #ndiv = 5
    #sigma_b = 0.024 * pi / 180.0
    #sigma_m = 0.044 * pi / 180.0
    #n_sigma = 4.0
    #max_P2 = test_transform(
      #self.experiment,
      #self.reference[max_ind]['shoebox'],
      #self.reference[max_ind]['s1'],
      #self.reference[max_ind]['xyzcal.mm'][2],
      #grid_size,
      #sigma_m,
      #sigma_b,
      #n_sigma,
      #ndiv)
    #max_P = max_P2

    ref_ind = locator.index(max_C)
    ref_P = locator.profile(ref_ind)
    ref_C = locator.coord(ref_ind)

    print "Max Index: ", max_ind, max_I, flex.sum(max_P), flex.sum(max_S)
    print "Coord: ", max_C, "Ref Coord: ", ref_C

    print "Min Index: ", min_ind, min_I, flex.sum(min_P), flex.sum(min_S)
    print "Coord: ", min_C, "Ref Coord: ", ref_C

    #vmax = flex.max(max_P)
    #print sum(max_S)
    #print sum(max_P)
    #from matplotlib import pylab, cm
    #for j in range(9):
      #pylab.subplot(3, 3, j+1)
      #pylab.imshow(max_P.as_numpy_array()[j], vmin=0, vmax=vmax,
      #interpolation='none', cmap=cm.Greys_r)
    #pylab.show()

    #vmax = flex.max(min_P)
    #print sum(min_S)
    #print sum(min_P)
    #from matplotlib import pylab, cm
    #for j in range(9):
      #pylab.subplot(3, 3, j+1)
      #pylab.imshow(min_P.as_numpy_array()[j], vmin=0, vmax=vmax,
      #interpolation='none', cmap=cm.Greys_r)
    #pylab.show()

    #for k in range(max_S.all()[0]):
      #print ''
      #print 'Slice %d' % k
      #for j in range(max_S.all()[1]):
        #print ' '.join(["%-4d" % int(max_S[k,j,i]) for i in range(max_S.all()[2])])

    print "Testing"

    def f(I):
      mask = flex.bool(flex.grid(9,9,9), False)
      for k in range(9):
        for j in range(9):
          for i in range(9):
            dx = 5 * (i - 4.5) / 4.5
            dy = 5 * (j - 4.5) / 4.5
            dz = 5 * (k - 4.5) / 4.5
            dd = sqrt(dx**2 + dy**2 + dz**2)
            if dd <= 3:
              mask[k,j,i] = True

      mask = mask.as_1d() & (ref_P.as_1d() > 0)
      p = ref_P.as_1d().select(mask)
      c = max_P.as_1d().select(mask)
      return flex.sum((c - I * p)**2 / (I * p))

    def df(I):
      mask = flex.bool(flex.grid(9,9,9), False)
      for k in range(9):
        for j in range(9):
          for i in range(9):
            dx = 5 * (i - 4.5) / 4.5
            dy = 5 * (j - 4.5) / 4.5
            dz = 5 * (k - 4.5) / 4.5
            dd = sqrt(dx**2 + dy**2 + dz**2)
            if dd <= 3:
              mask[k,j,i] = True
      mask = mask.as_1d() & (ref_P.as_1d() > 0)
      p = ref_P.as_1d().select(mask)
      c = max_P.as_1d().select(mask)
      b = 0
      return flex.sum(p) - flex.sum(c*c / (I*I*p))
      #return flex.sum(p - p*c*c / ((b + I*p)**2))
      #return flex.sum(3*p*p + (c*c*p*p - 4*b*p*p) / ((b + I*p)**2))
      #return flex.sum(p - c*c / (I*I*p))
      #return flex.sum(p * (-c+p*I)*(c+p*I)/((p*I)**2))

    def d2f(I):
      mask = flex.bool(flex.grid(9,9,9), False)
      for k in range(9):
        for j in range(9):
          for i in range(9):
            dx = 5 * (i - 4.5) / 4.5
            dy = 5 * (j - 4.5) / 4.5
            dz = 5 * (k - 4.5) / 4.5
            dd = sqrt(dx**2 + dy**2 + dz**2)
            if dd <= 3:
              mask[k,j,i] = True

      mask = mask.as_1d() & (ref_P.as_1d() > 0)
      p = ref_P.as_1d().select(mask)
      c = max_P.as_1d().select(mask)
      return flex.sum(2*c*c*p*p / (p*I)**3)

    I = 10703#flex.sum(max_P)
    mask = ref_P.as_1d() > 0
    p = ref_P.as_1d().select(mask)
    c = max_P.as_1d().select(mask)
    for i in range(10):
      I = I - df(I) / d2f(I)
      #v = I*p
      #I = flex.sum(c * p / v) / flex.sum(p*p / v)
      print I


    from math import log
    ff = []
    for I in range(9500, 11500):
      ff.append(f(I))
    print sorted(range(len(ff)), key=lambda x: ff[x])[0] + 9500
    from matplotlib import pylab
    pylab.plot(range(9500,11500), ff)
    pylab.show()
    #exit(0)

    #I = 10000
    #print flex.sum((max_P - I * ref_P)**2) / flex.sum(I * ref_P)


    #I = 10100
    #print flex.sum((max_P - I * ref_P)**2) / flex.sum(I * ref_P)
    #exit(0)


    print flex.sum(self.reference[0]['rs_shoebox'].data)
    print I_cal[0]

    # Calculate the z score
    perc = self.mv3n_tolerance_interval(3*3)
    Z = (I_cal - I_sim) / flex.sqrt(I_var)
    mv = flex.mean_and_variance(Z)
    Z_mean = mv.mean()
    Z_var = mv.unweighted_sample_variance()
    print "Z: mean: %f, var: %f, sig: %f" % (Z_mean, Z_var, sqrt(Z_var))

    print len(I_cal)

    from matplotlib import pylab
    from mpl_toolkits.mplot3d import Axes3D
    #fig = pylab.figure()
    #ax = fig.add_subplot(111, projection='3d')
    #ax.scatter(X_pos, Y_pos, P_cor)

    #pylab.scatter(X_pos, P_cor)
    #pylab.scatter(Y_pos, P_cor)
    #pylab.scatter(Z_pos, P_cor)
    #pylab.hist(P_cor,100)
    #pylab.scatter(P_cor, (I_cal - I_exp) / I_exp)
    pylab.hist(Z, 100)
    #pylab.hist(I_cal,100)
    #pylab.hist(I_cal - I_sim, 100)
    pylab.show()
コード例 #9
0
ファイル: stills_indexer.py プロジェクト: cctbx-xfel/dials
                                         indexed = indexed,
                                         experiments = experiments))
    if len(candidates) == 0:
      raise Sorry("No suitable indexing solution found")

    print "**** ALL CANDIDATES:"
    for i,XX in enumerate(candidates):
      print "\n****Candidate %d"%i,XX
      cc = XX.crystal
      if hasattr(cc, '_ML_half_mosaicity_deg'):
        print "  half mosaicity %5.2f deg."%(cc._ML_half_mosaicity_deg)
        print "  domain size %.0f Ang."%(cc._ML_domain_size_ang)
    print "\n**** BEST CANDIDATE:"

    results = flex.double([c.rmsd for c in candidates])
    best = candidates[flex.min_index(results)]
    print best

    if params.indexing.stills.refine_all_candidates:
      if best.rmsd > params.indexing.stills.rmsd_min_px:
        raise Sorry ("RMSD too high, %f" %rmsd)

      if best.ewald_proximal_volume > params.indexing.stills.ewald_proximal_volume_max:
        raise Sorry ("Ewald proximity volume too high, %f"%best.ewald_proximal_volume)

      if len(candidates) > 1:
        for i in xrange(len(candidates)):
          if i == flex.min_index(results):
            continue
          if best.ewald_proximal_volume > candidates[i].ewald_proximal_volume:
            print "Couldn't figure out which candidate is best; picked the one with the best RMSD."
コード例 #10
0
    def test_for_reference(self):
        from dials.algorithms.integration import ProfileFittingReciprocalSpace
        from dials.array_family import flex
        from dials.algorithms.shoebox import MaskCode
        from dials.algorithms.statistics import kolmogorov_smirnov_test_standard_normal
        from math import erf, sqrt, pi
        from copy import deepcopy
        from dials.algorithms.simulation.reciprocal_space import Simulator
        from os.path import basename

        # Integrate
        integration = ProfileFittingReciprocalSpace(
            grid_size=4,
            threshold=0.00,
            frame_interval=100,
            n_sigma=5,
            mask_n_sigma=3,
            sigma_b=0.024 * pi / 180.0,
            sigma_m=0.044 * pi / 180.0,
        )

        # Integrate the reference profiles
        integration(self.experiment, self.reference)

        p = integration.learner.locate().profile(0)
        m = integration.learner.locate().mask(0)

        locator = integration.learner.locate()

        cor = locator.correlations()
        for j in range(cor.all()[0]):
            print(" ".join([str(cor[j, i]) for i in range(cor.all()[1])]))
        # exit(0)
        # from matplotlib import pylab
        # pylab.imshow(cor.as_numpy_array(), interpolation='none', vmin=-1, vmax=1)
        # pylab.show()

        # n = locator.size()
        # for i in range(n):
        # c = locator.coord(i)
        # p = locator.profile(i)
        # vmax = flex.max(p)
        # from matplotlib import pylab
        # for j in range(9):
        # pylab.subplot(3, 3, j+1)
        # pylab.imshow(p.as_numpy_array()[j], vmin=0, vmax=vmax,
        # interpolation='none')
        # pylab.show()

        # print "NRef: ", n
        # x = []
        # y = []
        # for i in range(n):
        # c = locator.coord(i)
        # x.append(c[0])
        # y.append(c[1])
        # from matplotlib import pylab
        # pylab.scatter(x,y)
        # pylab.show()

        # exit(0)
        import numpy

        # pmax = flex.max(p)
        # scale = 100 / pmax
        # print "Scale: ", 100 / pmax
        # p = p.as_numpy_array() *100 / pmax
        # p = p.astype(numpy.int)
        # print p
        # print m.as_numpy_array()

        # Check the reference profiles and spots are ok
        # self.check_profiles(integration.learner)

        # Make sure background is zero
        profiles = self.reference["rs_shoebox"]
        eps = 1e-7
        for p in profiles:
            assert abs(flex.sum(p.background) - 0) < eps
        print("OK")

        # Only select variances greater than zero
        mask = self.reference.get_flags(self.reference.flags.integrated)
        I_cal = self.reference["intensity.sum.value"]
        I_var = self.reference["intensity.sum.variance"]
        B_sim = self.reference["background.sim"].as_double()
        I_sim = self.reference["intensity.sim"].as_double()
        I_exp = self.reference["intensity.exp"]
        P_cor = self.reference["profile.correlation"]
        X_pos, Y_pos, Z_pos = self.reference["xyzcal.px"].parts()
        I_cal = I_cal.select(mask)
        I_var = I_var.select(mask)
        I_sim = I_sim.select(mask)
        I_exp = I_exp.select(mask)
        P_cor = P_cor.select(mask)

        max_ind = flex.max_index(I_cal)
        max_I = I_cal[max_ind]
        max_P = self.reference[max_ind]["rs_shoebox"].data
        max_C = self.reference[max_ind]["xyzcal.px"]
        max_S = self.reference[max_ind]["shoebox"].data

        min_ind = flex.min_index(P_cor)
        min_I = I_cal[min_ind]
        min_P = self.reference[min_ind]["rs_shoebox"].data
        min_C = self.reference[min_ind]["xyzcal.px"]
        min_S = self.reference[min_ind]["shoebox"].data

        ##for k in range(max_S.all()[0]):
        # if False:
        # for j in range(max_S.all()[1]):
        # for i in range(max_S.all()[2]):
        # max_S[k,j,i] = 0
        # if (abs(i - max_S.all()[2] // 2) < 2 and
        # abs(j - max_S.all()[1] // 2) < 2 and
        # abs(k - max_S.all()[0] // 2) < 2):
        # max_S[k,j,i] = 100

        # p = max_P.as_numpy_array() * 100 / flex.max(max_P)
        # p = p.astype(numpy.int)
        # print p

        # from dials.scratch.jmp.misc.test_transform import test_transform
        # grid_size = 4
        # ndiv = 5
        # sigma_b = 0.024 * pi / 180.0
        # sigma_m = 0.044 * pi / 180.0
        # n_sigma = 4.0
        # max_P2 = test_transform(
        # self.experiment,
        # self.reference[max_ind]['shoebox'],
        # self.reference[max_ind]['s1'],
        # self.reference[max_ind]['xyzcal.mm'][2],
        # grid_size,
        # sigma_m,
        # sigma_b,
        # n_sigma,
        # ndiv)
        # max_P = max_P2

        ref_ind = locator.index(max_C)
        ref_P = locator.profile(ref_ind)
        ref_C = locator.coord(ref_ind)

        print("Max Index: ", max_ind, max_I, flex.sum(max_P), flex.sum(max_S))
        print("Coord: ", max_C, "Ref Coord: ", ref_C)

        print("Min Index: ", min_ind, min_I, flex.sum(min_P), flex.sum(min_S))
        print("Coord: ", min_C, "Ref Coord: ", ref_C)

        # vmax = flex.max(max_P)
        # print sum(max_S)
        # print sum(max_P)
        # from matplotlib import pylab, cm
        # for j in range(9):
        # pylab.subplot(3, 3, j+1)
        # pylab.imshow(max_P.as_numpy_array()[j], vmin=0, vmax=vmax,
        # interpolation='none', cmap=cm.Greys_r)
        # pylab.show()

        # vmax = flex.max(min_P)
        # print sum(min_S)
        # print sum(min_P)
        # from matplotlib import pylab, cm
        # for j in range(9):
        # pylab.subplot(3, 3, j+1)
        # pylab.imshow(min_P.as_numpy_array()[j], vmin=0, vmax=vmax,
        # interpolation='none', cmap=cm.Greys_r)
        # pylab.show()

        # for k in range(max_S.all()[0]):
        # print ''
        # print 'Slice %d' % k
        # for j in range(max_S.all()[1]):
        # print ' '.join(["%-4d" % int(max_S[k,j,i]) for i in range(max_S.all()[2])])

        print("Testing")

        def f(I):
            mask = flex.bool(flex.grid(9, 9, 9), False)
            for k in range(9):
                for j in range(9):
                    for i in range(9):
                        dx = 5 * (i - 4.5) / 4.5
                        dy = 5 * (j - 4.5) / 4.5
                        dz = 5 * (k - 4.5) / 4.5
                        dd = sqrt(dx**2 + dy**2 + dz**2)
                        if dd <= 3:
                            mask[k, j, i] = True

            mask = mask.as_1d() & (ref_P.as_1d() > 0)
            p = ref_P.as_1d().select(mask)
            c = max_P.as_1d().select(mask)
            return flex.sum((c - I * p)**2 / (I * p))

        def df(I):
            mask = flex.bool(flex.grid(9, 9, 9), False)
            for k in range(9):
                for j in range(9):
                    for i in range(9):
                        dx = 5 * (i - 4.5) / 4.5
                        dy = 5 * (j - 4.5) / 4.5
                        dz = 5 * (k - 4.5) / 4.5
                        dd = sqrt(dx**2 + dy**2 + dz**2)
                        if dd <= 3:
                            mask[k, j, i] = True
            mask = mask.as_1d() & (ref_P.as_1d() > 0)
            p = ref_P.as_1d().select(mask)
            c = max_P.as_1d().select(mask)
            b = 0
            return flex.sum(p) - flex.sum(c * c / (I * I * p))
            # return flex.sum(p - p*c*c / ((b + I*p)**2))
            # return flex.sum(3*p*p + (c*c*p*p - 4*b*p*p) / ((b + I*p)**2))
            # return flex.sum(p - c*c / (I*I*p))
            # return flex.sum(p * (-c+p*I)*(c+p*I)/((p*I)**2))

        def d2f(I):
            mask = flex.bool(flex.grid(9, 9, 9), False)
            for k in range(9):
                for j in range(9):
                    for i in range(9):
                        dx = 5 * (i - 4.5) / 4.5
                        dy = 5 * (j - 4.5) / 4.5
                        dz = 5 * (k - 4.5) / 4.5
                        dd = sqrt(dx**2 + dy**2 + dz**2)
                        if dd <= 3:
                            mask[k, j, i] = True

            mask = mask.as_1d() & (ref_P.as_1d() > 0)
            p = ref_P.as_1d().select(mask)
            c = max_P.as_1d().select(mask)
            return flex.sum(2 * c * c * p * p / (p * I)**3)

        I = 10703  # flex.sum(max_P)
        mask = ref_P.as_1d() > 0
        p = ref_P.as_1d().select(mask)
        c = max_P.as_1d().select(mask)
        for i in range(10):
            I = I - df(I) / d2f(I)
            # v = I*p
            # I = flex.sum(c * p / v) / flex.sum(p*p / v)
            print(I)

        from math import log

        ff = []
        for I in range(9500, 11500):
            ff.append(f(I))
        print(sorted(range(len(ff)), key=lambda x: ff[x])[0] + 9500)
        from matplotlib import pylab

        pylab.plot(range(9500, 11500), ff)
        pylab.show()
        # exit(0)

        # I = 10000
        # print flex.sum((max_P - I * ref_P)**2) / flex.sum(I * ref_P)

        # I = 10100
        # print flex.sum((max_P - I * ref_P)**2) / flex.sum(I * ref_P)
        # exit(0)

        print(flex.sum(self.reference[0]["rs_shoebox"].data))
        print(I_cal[0])

        # Calculate the z score
        perc = self.mv3n_tolerance_interval(3 * 3)
        Z = (I_cal - I_sim) / flex.sqrt(I_var)
        mv = flex.mean_and_variance(Z)
        Z_mean = mv.mean()
        Z_var = mv.unweighted_sample_variance()
        print("Z: mean: %f, var: %f, sig: %f" % (Z_mean, Z_var, sqrt(Z_var)))

        print(len(I_cal))

        from matplotlib import pylab
        from mpl_toolkits.mplot3d import Axes3D

        # fig = pylab.figure()
        # ax = fig.add_subplot(111, projection='3d')
        # ax.scatter(X_pos, Y_pos, P_cor)

        # pylab.scatter(X_pos, P_cor)
        # pylab.scatter(Y_pos, P_cor)
        # pylab.scatter(Z_pos, P_cor)
        # pylab.hist(P_cor,100)
        # pylab.scatter(P_cor, (I_cal - I_exp) / I_exp)
        pylab.hist(Z, 100)
        # pylab.hist(I_cal,100)
        # pylab.hist(I_cal - I_sim, 100)
        pylab.show()
コード例 #11
0
ファイル: stills_indexer.py プロジェクト: dials/dials
                                         indexed = indexed,
                                         experiments = experiments))
    if len(candidates) == 0:
      raise Sorry("No suitable indexing solution found")

    print "**** ALL CANDIDATES:"
    for i,XX in enumerate(candidates):
      print "\n****Candidate %d"%i,XX
      cc = XX.crystal
      if hasattr(cc, '_ML_half_mosaicity_deg'):
        print "  half mosaicity %5.2f deg."%(cc._ML_half_mosaicity_deg)
        print "  domain size %.0f Ang."%(cc._ML_domain_size_ang)
    print "\n**** BEST CANDIDATE:"

    results = flex.double([c.rmsd for c in candidates])
    best = candidates[flex.min_index(results)]
    print best

    if params.indexing.stills.refine_all_candidates:
      if best.rmsd > params.indexing.stills.rmsd_min_px:
        raise Sorry ("RMSD too high, %f" %rmsd)

      if best.ewald_proximal_volume > params.indexing.stills.ewald_proximal_volume_max:
        raise Sorry ("Ewald proximity volume too high, %f"%best.ewald_proximal_volume)

      if len(candidates) > 1:
        for i in xrange(len(candidates)):
          if i == flex.min_index(results):
            continue
          if best.ewald_proximal_volume > candidates[i].ewald_proximal_volume:
            print "Couldn't figure out which candidate is best; picked the one with the best RMSD."