コード例 #1
0
ファイル: observers.py プロジェクト: jbeilstenedmands/dials
 def update(self, scaling_script):
     if scaling_script.merging_statistics_result:
         self.data = {
             "statistics":
             scaling_script.merging_statistics_result,
             "anomalous_statistics":
             scaling_script.anom_merging_statistics_result,
             "is_centric":
             scaling_script.scaled_miller_array.space_group().is_centric(),
         }
         # Now calculate batch data
         (
             batches,
             rvb,
             isigivb,
             svb,
             batch_data,
         ) = reflection_tables_to_batch_dependent_properties(  # pylint: disable=unbalanced-tuple-unpacking
             scaling_script.reflections,
             scaling_script.experiments,
             scaling_script.scaled_miller_array,
         )
         self.data[
             "scaled_miller_array"] = scaling_script.scaled_miller_array
         self.data["bm"] = batch_manager(batches, batch_data)
         self.data["r_merge_vs_batch"] = rvb
         self.data["scale_vs_batch"] = svb
         self.data["isigivsbatch"] = isigivb
         self.data["image_range_tables"] = [
             make_image_range_table(scaling_script.experiments,
                                    self.data["bm"])
         ]
コード例 #2
0
def make_merging_stats_plots(script):
    """Make merging stats plots for HTML report"""
    d = {
        "scaling_tables": ([], []),
        "resolution_plots": {},
        "batch_plots": {},
        "misc_plots": {},
        "anom_plots": {},
        "image_range_tables": [],
    }
    (
        batches,
        rvb,
        isigivb,
        svb,
        batch_data,
    ) = reflection_tables_to_batch_dependent_properties(  # pylint: disable=unbalanced-tuple-unpacking
        script.reflections,
        script.experiments,
        script.scaled_miller_array,
    )
    bm = batch_manager(batches, batch_data)
    image_range_tables = make_image_range_table(script.experiments, bm)

    if script.merging_statistics_result:
        stats = script.merging_statistics_result
        anom_stats = script.anom_merging_statistics_result
        is_centric = script.scaled_miller_array.space_group().is_centric()
        # Now calculate batch data
        plotter = ResolutionPlotsAndStats(stats, anom_stats, is_centric)
        d["resolution_plots"].update(plotter.make_all_plots())
        d["scaling_tables"] = plotter.statistics_tables()
        d["batch_plots"].update(scale_rmerge_vs_batch_plot(bm, rvb, svb))
        d["batch_plots"].update(i_over_sig_i_vs_batch_plot(bm, isigivb))
        plotter = IntensityStatisticsPlots(
            script.scaled_miller_array, run_xtriage_analysis=False
        )
        d["resolution_plots"].update(plotter.generate_resolution_dependent_plots())
        if d["resolution_plots"]["cc_one_half"]["data"][2]:
            cc_anom = d["resolution_plots"]["cc_one_half"]["data"][2]["y"]
            significance = d["resolution_plots"]["cc_one_half"]["data"][3]["y"]
            sig = flex.double(cc_anom) > flex.double(significance)
            max_anom = 0
            for i, v in enumerate(sig):
                if v:
                    max_anom = i
                else:
                    break
            d_min = uctbx.d_star_sq_as_d(plotter.binner.limits())[max_anom + 1]
        else:
            d_min = 0.0
        d["misc_plots"].update(plotter.generate_miscellanous_plots())
        intensities_anom = script.scaled_miller_array.as_anomalous_array()
        intensities_anom = intensities_anom.map_to_asu().customized_copy(
            info=script.scaled_miller_array.info()
        )
        anom_plotter = AnomalousPlotter(intensities_anom, strong_cutoff=d_min)
        d["anom_plots"].update(anom_plotter.make_plots())
    d["image_range_tables"] = [image_range_tables]
    return d
コード例 #3
0
    def batch_dependent_plots(self):
        binned_batches, rmerge, isigi, scalesvsbatch = batch_dependent_properties(
            self.batches, self.intensities, self.scales)

        batches = [{"id": b.id, "range": b.range} for b in self.params.batch]
        bm = batch_manager(binned_batches, batches)

        d = {}
        d.update(i_over_sig_i_vs_batch_plot(bm, isigi))
        d.update(scale_rmerge_vs_batch_plot(bm, rmerge, scalesvsbatch))
        if self.experiments is not None:
            d["image_range_table"] = make_image_range_table(
                self.experiments, bm)
        return d