def __init__(self, cols=["x_resid", "y_resid", "phi_resid"], min_num_obs=20, separate_experiments=True, separate_panels=True, alpha=0.5, max_n_groups=5, min_group_size=300, n_trials=500, k1=2, k2=2, k3=100, threshold_probability=0.975): CentroidOutlier.__init__(self, cols=cols, min_num_obs=min_num_obs, separate_experiments=separate_experiments, separate_panels=separate_panels) # Keep the FastMCD options here self._alpha = alpha self._max_n_groups = max_n_groups self._min_group_size = min_group_size self._n_trials = n_trials self._k1 = k1 self._k2 = k2 self._k3 = k3 # Calculate Mahalanobis distance threshold df = len(cols) self._mahasq_cutoff = qchisq(threshold_probability, df) return
def __init__( self, cols=None, min_num_obs=20, separate_experiments=True, separate_panels=True, block_width=None, alpha=0.5, max_n_groups=5, min_group_size=300, n_trials=500, k1=2, k2=2, k3=100, threshold_probability=0.975, ): if cols is None: cols = ["x_resid", "y_resid", "phi_resid"] CentroidOutlier.__init__( self, cols=cols, min_num_obs=min_num_obs, separate_experiments=separate_experiments, separate_panels=separate_panels, block_width=block_width, ) # Keep the FastMCD options here self._alpha = alpha self._max_n_groups = max_n_groups self._min_group_size = min_group_size self._n_trials = n_trials self._k1 = k1 self._k2 = k2 self._k3 = k3 # Calculate Mahalanobis distance threshold df = len(cols) self._mahasq_cutoff = qchisq(threshold_probability, df) return