コード例 #1
0
ファイル: outlier_rejection.py プロジェクト: hattne/dials
    def _round_of_outlier_rejection(self):
        """
        Calculate normal deviations from the data in the Ih_table.

        Returns:
            (tuple): tuple containing:
                outlier_indices: A flex.size_t array of outlier indices w.r.t
                    the current Ih_table
                other_potential_outliers: A flex.size_t array of indices from
                    the symmetry groups where outliers were found, excluding the
                    indices of the outliers themselves (indices w.r.t current
                    Ih_table).

        """
        Ih_table = self._Ih_table_block
        I = Ih_table.intensities
        g = Ih_table.inverse_scale_factors
        w = Ih_table.weights
        wgIsum = (
            (w * g * I) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix
        wg2sum = (
            (w * g * g) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix
        wgIsum_others = wgIsum - (w * g * I)
        wg2sum_others = wg2sum - (w * g * g)
        # Now do the rejection analyis if n_in_group > 2
        nh = Ih_table.calc_nh()
        sel = nh > 2
        wg2sum_others_sel = wg2sum_others.select(sel)
        wgIsum_others_sel = wgIsum_others.select(sel)

        # guard against zero divison errors - can happen due to rounding errors
        # or bad data giving g values are very small
        zero_sel = wg2sum_others_sel == 0.0
        # set as one for now, then mark as outlier below. This will only affect if
        # g is near zero, if w is zero then throw an assertionerror.
        wg2sum_others_sel.set_selected(zero_sel, 1.0)
        g_sel = g.select(sel)
        I_sel = I.select(sel)
        w_sel = w.select(sel)

        assert w_sel.all_gt(0)  # guard against division by zero
        norm_dev = (I_sel -
                    (g_sel * wgIsum_others_sel / wg2sum_others_sel)) / ((
                        (1.0 / w_sel) + (g_sel**2 / wg2sum_others_sel))**0.5)
        norm_dev.set_selected(zero_sel, 1000)  # to trigger rejection
        z_score = flex.abs(norm_dev)
        # Want an array same size as Ih table.
        all_z_scores = flex.double(Ih_table.size, 0.0)
        all_z_scores.set_selected(sel.iselection(), z_score)
        outlier_indices, other_potential_outliers = determine_outlier_indices(
            Ih_table.h_index_matrix, all_z_scores, self._zmax)
        return outlier_indices, other_potential_outliers
コード例 #2
0
    def _round_of_outlier_rejection(self):
        """
        Calculate normal deviations from the data in the Ih_table.
        """
        Ih_table = self._Ih_table_block
        intensity = Ih_table.intensities
        g = Ih_table.inverse_scale_factors
        w = self.weights
        wgIsum = ((w * g * intensity) *
                  Ih_table.h_index_matrix) * Ih_table.h_expand_matrix
        wg2sum = (
            (w * g * g) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix
        wgIsum_others = wgIsum - (w * g * intensity)
        wg2sum_others = wg2sum - (w * g * g)
        # Now do the rejection analyis if n_in_group > 2
        nh = Ih_table.calc_nh()
        sel = nh > 2
        wg2sum_others_sel = wg2sum_others.select(sel)
        wgIsum_others_sel = wgIsum_others.select(sel)

        # guard against zero divison errors - can happen due to rounding errors
        # or bad data giving g values are very small
        zero_sel = wg2sum_others_sel == 0.0
        # set as one for now, then mark as outlier below. This will only affect if
        # g is near zero, if w is zero then throw an assertionerror.
        wg2sum_others_sel.set_selected(zero_sel, 1.0)
        g_sel = g.select(sel)
        I_sel = intensity.select(sel)
        w_sel = w.select(sel)

        assert w_sel.all_gt(0)  # guard against division by zero
        norm_dev = (I_sel -
                    (g_sel * wgIsum_others_sel / wg2sum_others_sel)) / (
                        flex.sqrt((1.0 / w_sel) +
                                  (flex.pow2(g_sel) / wg2sum_others_sel)))
        norm_dev.set_selected(zero_sel, 1000)  # to trigger rejection
        z_score = flex.abs(norm_dev)
        # Want an array same size as Ih table.
        all_z_scores = flex.double(Ih_table.size, 0.0)
        all_z_scores.set_selected(sel.iselection(), z_score)
        outlier_indices, other_potential_outliers = determine_outlier_indices(
            Ih_table.h_index_matrix, all_z_scores, self._zmax)
        self._outlier_indices.extend(
            self._Ih_table_block.Ih_table["loc_indices"].select(
                outlier_indices))
        self._datasets.extend(
            self._Ih_table_block.Ih_table["dataset_id"].select(
                outlier_indices))
        sel = flex.bool(Ih_table.size, False)
        sel.set_selected(other_potential_outliers, True)
        self._Ih_table_block = self._Ih_table_block.select(sel)
        self.weights = self.weights.select(sel)
コード例 #3
0
ファイル: outlier_rejection.py プロジェクト: kmdalton/dials
    def _round_of_outlier_rejection(self):
        """
        Calculate normal deviations from the data in the Ih_table.
        """
        Ih_table = self._Ih_table_block
        intensity = Ih_table.intensities
        g = Ih_table.inverse_scale_factors
        w = self.weights
        wgIsum = Ih_table.sum_in_groups(w * g * intensity, output="per_refl")
        wg2sum = Ih_table.sum_in_groups(w * g * g, output="per_refl")
        wgIsum_others = wgIsum - (w * g * intensity)
        wg2sum_others = wg2sum - (w * g * g)
        # Now do the rejection analysis if n_in_group > 2
        nh = Ih_table.calc_nh()
        sel = nh > 2
        wg2sum_others_sel = wg2sum_others[sel]
        wgIsum_others_sel = wgIsum_others[sel]

        # guard against zero division errors - can happen due to rounding errors
        # or bad data giving g values are very small
        zero_sel = wg2sum_others_sel == 0.0
        # set as one for now, then mark as outlier below. This will only affect if
        # g is near zero, if w is zero then throw an assertionerror.
        wg2sum_others_sel[zero_sel] = 1.0
        g_sel = g[sel]
        I_sel = intensity[sel]
        w_sel = w[sel]

        assert np.all(w_sel > 0)  # guard against division by zero
        norm_dev = (I_sel -
                    (g_sel * wgIsum_others_sel / wg2sum_others_sel)) / (
                        np.sqrt((1.0 / w_sel) +
                                (np.square(g_sel) / wg2sum_others_sel)))
        norm_dev[zero_sel] = 1000  # to trigger rejection
        z_score = np.abs(norm_dev)
        # Want an array same size as Ih table.
        all_z_scores = np.zeros(Ih_table.size)
        # all_z_scores.set_selected(sel.iselection(), z_score)
        all_z_scores[sel] = z_score
        outlier_indices, other_potential_outliers = determine_outlier_indices(
            Ih_table.h_index_matrix, flumpy.from_numpy(all_z_scores),
            self._zmax)
        sel = np.full(Ih_table.size, False, dtype=bool)
        outlier_indices = flumpy.to_numpy(outlier_indices)
        sel[outlier_indices] = True
        lsel = self._Ih_table_block.Ih_table["loc_indices"].iloc[sel].to_numpy(
        )
        dsel = self._Ih_table_block.Ih_table["dataset_id"].iloc[sel].to_numpy()
        self._outlier_indices = np.concatenate([
            self._outlier_indices,
            lsel,
        ])
        self._datasets = np.concatenate([
            self._datasets,
            dsel,
        ])

        sel = np.full(Ih_table.size, False, dtype=bool)
        sel[flumpy.to_numpy(other_potential_outliers)] = True
        self._Ih_table_block = self._Ih_table_block.select(sel)
        self.weights = self.weights[sel]