def test_dicod_interf(exit_on_deadlock, algo, n_jobs, n_seg): K = 3 rng = np.random.RandomState(42) D = rng.normal(size=(K, 2, 5)) D /= np.sqrt((D*D).sum(axis=-1))[:, :, None] z = np.zeros((K, 100)) z[0, [min(99, 100 // n_jobs + 1)]] = 1 x = np.array([[fftconvolve(zk, dk, 'full') for dk in Dk] for Dk, zk in zip(D, z)]).sum(axis=0) pb = MultivariateConvolutionalCodingProblem( D, x, lmbd=0.002) dicod = DICOD(n_jobs=n_jobs, use_seg=n_seg, max_iter=1e6, tol=1e-15, hostfile='hostfile', algorithm=algo, debug=5, patience=1000) dicod.fit(pb) pt = pb.pt*(abs(pb.pt) > pb.lmbd) # Assert we recover the right support print(pb.pt.reshape(1, -1).nonzero()[1], '\n', pt.reshape(1, -1).nonzero()[1], '\n', z.reshape(1, -1).nonzero()[1]) assert (np.all(pt.reshape(1, -1).nonzero()[1] == z.reshape(1, -1).nonzero()[1]) or pb.cost(z) >= dicod.cost), ( "Cost pt: ", dicod.cost, "Cost z: ", pb.cost(z)) assert abs(pb.cost(pb.pt) - dicod.cost)/dicod.cost < 1e-6
def run_one(args_pb, lmbd, optimizer, optimizer_kwargs, fname, file_lock): n_pb, args_pb, seed_pb = args_pb pb = fun_rand_problem(*args_pb, seed=seed_pb) if isinstance(optimizer, str): method = optimizer if optimizer == "lgcd": from dicod.dicod import DICOD optimizer = DICOD(None, **optimizer_kwargs) elif optimizer == "fista": from dicod.fista import FISTA optimizer = FISTA(None, **optimizer_kwargs) elif getattr(optimizer, "fit", None) is None: raise ValueError("`optimizer` parameter should be a string or an " "optimizer object.") else: method = "dicod" # Do not count the initialization cost of the MPI pool of workers pb.lmbd = lmbd_max = pb.get_lmbd_max() optimizer.fit(pb) pb.lmbd = lmbd_max * lmbd pb.reset() optimizer.fit(pb) import time time.sleep(1) sparsity = len(pb.pt.nonzero()[0]) / pb.pt.size out_str = 'Pb{},{},{},{},{},{},{}\n'.format(n_pb, lmbd, optimizer.runtime, optimizer.t, lmbd_max, method, sparsity) with file_lock: with open(fname, 'a') as f: f.write(out_str) print('=' * 79) print('[{}] PB{}: End process with lmbd={}({}) in {:.2f}s' ''.format(datetime.datetime.now().strftime("%Ih%M"), n_pb, lmbd, lmbd * lmbd_max, optimizer.runtime)) print('\n' + '=' * 79) sleep(.5) return out_str
def step_detect(max_iter=5e6, timeout=7200, n_jobs=2, hostfile=None, n_epoch=10, save_dir=None, debug=0): '''Run DICOD algorithm for a certain problem with different ValueError for n_jobs and store the runtime in csv files if given a save_dir. Parameters ---------- max_iter: int, optional (default: 5e6) maximal number of iteration run by DICOD timeout: int, optional (default: 7200) maximal running time for DICOD. The default timeout is 2 hours n_jobs: int, optional (default: 2) Maximal number of jobs used to compute the convolutional sparse coding hostfile: str, optional (default: None) MPI cluster confifg file, permit to specify multiple machine to run the convolutional sparse coding n_epoch: int, optional (default: 10) number of epoch run by the algorithm save_dir: str, optional (default: None) If not None, all the runtimes will be saved in csv files contained in the given directory. The directory must exist. This will create a file for each problem size T and save the Pb number, the number of core and the runtime computed in two different ways. debug: int, optional (default:0) The greater it is, the more verbose the algorithm ''' try: common_args = dict(logging=True, log_rate='log1.6', max_iter=max_iter, timeout=timeout, debug=debug, tol=5e-2) print('construct problem') pbs, D, D_labels = fun_step_problem(K=50, N=None, lmbd=1) N = len(pbs) print('End\n') lmbd = .3 dcp = DICOD(pbs[0][0], n_jobs=n_jobs, hostfile=hostfile, positive=True, use_seg=1, **common_args) grad_D = [np.zeros(D.shape) for _ in range(N)] grad_nz = set() cost = np.zeros(N) cost_i = 1e6 order = np.arange(N) np.random.shuffle(order) mini_batch_size = 20 n_batch = N // mini_batch_size current_batch = 0 current_epoch = 0 time_epoch = time() while current_epoch < n_epoch: # Stochastic choice of a ponit pb_batch = [[pbs[i][0], i] for i in order[current_batch * mini_batch_size:(current_batch + 1) * mini_batch_size]] current_batch += 1 current_batch %= n_batch DD = None new = False for pb, i0 in pb_batch: pb.D = D # Sparse coding pb.reset() DD = dcp.fit(pb, DD=DD) # Update cost and D gradient new |= cost[i0] == 0 cost[i0] = pb.cost() grad_D[i0] = pb.grad_D(pb.pt) grad_nz.add(i0) # Logging N_see = len(grad_nz) cost_i1 = cost_i cost_i = np.sum(cost, axis=0) / N_see print('End mini_batch {:3} with cost {:e}' ''.format(int(current_batch), cost_i)) if current_batch == 0: print('=' * 79) print('End Epoch {} in {:.2}s' ''.format(current_epoch, time() - time_epoch)) time_epoch = time() current_epoch += 1 np.random.shuffle(order) print('=' * 79) # reg = np.zeros(D.shape) # reg[:, :, :-2] += D[:, :, 2:] # reg[:, :, :] -= D[:, :, :] # reg[:, :, :] /= np.sqrt(1e-2+D[:, :, :]*D[:, :, :]) # Update dictionary grad = np.sum(grad_D, axis=0) / N_see D -= lmbd * grad if cost_i >= cost_i1 and not new: #IPython.embed() lmbd *= .7 from sys import stdout as out print('=' * 79) print('Fit the pb to the latest dictionary') print('=' * 79) for i, (pb, _, _) in enumerate(pbs): pb.D = D pb.reset() dcp.fit(pb) out.write('\rCompute rpz: {:7.2%}'.format(i / N)) out.flush() print('\rCompute rpz: {:7}'.format('Done')) except KeyboardInterrupt: from sys import stdout as out print('=' * 79) print('Fit the pb to the latest dictionary') print('=' * 79) for i, (pb, _, _) in enumerate(pbs): pb.D = D pb.reset() dcp.fit(pb) out.write('\rCompute rpz: {:7.2%}'.format(i / N)) out.flush() print('\rCompute rpz: {:7}'.format('Done')) finally: IPython.embed() log.end()
def scaling_n_jobs(T=300, max_jobs=75, n_rep=10, save_dir=None, max_iter=5e6, timeout=7200, hostfile=None, run='all', lgg=False, use_seg=False, algorithm=ALGO_GS, debug=0, seed=None): '''Run DICOD algorithm for a certain problem with different value for n_jobs and store the runtime in csv files if given a save_dir. Parameters ---------- T: int, optional (default: 300) Size of the generated problems max_jobs: int, optional (default: 75) The algorithm will be run on problems with a number of cores varying from 5 to max_jobs in a log2 fashion n_rep: int, optional (default: 10) Number of different problem solved for all the different number of cores. save_dir: str, optional (default: None) If not None, all the runtimes will be saved in csv files contained in the given directory. The directory must exist. This will create a file for each problem size T and save the Pb number, the number of core and the runtime computed in two different ways. max_iter: int, optional (default: 5e6) maximal number of iteration run by DICOD timeout: int, optional (default: 7200) maximal running time for DICOD. The default timeout is 2 hours hostfile: str, optional (default: None) hostfile for the openMPI API to connect to the other running server to spawn the processes over different nodes run: list or str, optional (default: 'all') if all, run all the possible runs. Else, it should be a list composed of int for njobs to run or of str {n_jobs: n_rep} for specific cases. lgg: bool, optional (default: False) If set to true, enable the logging of the iteration cost during the run. It might slow down a bit the execution time and the collection of the results algorithm: enum, optional (default: ALGO_GS) Algorithm used to select the update for the coordinate descent. It should be either ALGO_GS (greedy selection) or ALGO_RANDOM (random selection). debug: int, optional (default:0) The greater it is, the more verbose the algorithm seed: int, optional (default:None) seed the rng of numpy to obtain fixed set of problems ''' common_args = dict(logging=lgg, log_rate='log1.6', max_iter=max_iter, timeout=timeout, debug=debug, tol=5e-2, patience=1000, hostfile=hostfile, algorithm=algorithm) # Do not use seg with ALGO_RANDOM assert not use_seg or algorithm == ALGO_GS S = 150 K = 10 d = 7 lmbd = 0.1 noise_level = 1 if save_dir is not None and not osp.exists(save_dir): import os os.mkdir(save_dir) elif save_dir is None: save_dir = "." rng = np.random.RandomState(seed) suffix = "_random" if algorithm else "_seg" if use_seg else "" file_name = 'runtimes_n_jobs_{}{}.csv'.format(T, suffix) file_name = osp.join(save_dir, file_name) for j in range(n_rep): seed_pb = rng.randint(4294967295) pb = fun_rand_problem(T, S, K, d, lmbd, noise_level, seed=seed_pb) dicod = DICOD(n_jobs=2, **common_args) runtimes = [] n_jobs = np.logspace(0, np.log2(75), 10, base=2) n_jobs = [int(round(nj)) for nj in n_jobs if nj <= max_jobs] n_jobs = np.unique(n_jobs) n_jobs = n_jobs[::-1] for nj in n_jobs: code_run = "{}:{}".format(nj, j) if (run != 'all' and str(nj) not in run and code_run not in run): continue dicod.reset() pb.reset() dicod.n_jobs = nj dicod.use_seg = T // nj if use_seg else 1 dicod.fit(pb) timings = TimingLogs(time=dicod.time, runtime=dicod.runtime, t_init=dicod.t_int) runtimes += [[timings]] import time time.sleep(1) if save_dir is not None: with open(file_name, 'a') as f: f.write('Pb{},{},{},{}\n'.format(j, nj, timings[0], timings[1])) print('=' * 79) print('[{}] PB{}: End process with {} jobs in {:.2f}s' ''.format(datetime.datetime.now().strftime("%I:%M"), j, nj, timings[0])) print('\n' + '=' * 79) sleep(.5) min_njobs = 0 fig, axs = plt.subplots(1, 1, sharex=True, num="scaling") with open(file_name) as f: lines = f.readlines() arr = defaultdict(lambda: []) for l in lines: r = list(map(float, l.split(',')[1:])) arr[r[0]] += [r] axk = axs l, L = 1e6, 0 for k, v in arr.items(): if k > min_njobs: V = np.mean(v, axis=0)[1] axk.scatter(k, V, color="b") l, L = min(l, V), max(L, V) axk.set_xscale('log') axk.set_yscale('log') n_jobs = np.array([k for k in arr.keys() if k > min_njobs]).astype(int) n_jobs.sort() m, M = n_jobs.min(), n_jobs.max() t = np.logspace(np.log2(m), np.log2(2 * M), 200, base=2) R0 = np.mean(arr[m], axis=0)[1] axk.plot(t, R0 * m / t, 'k--') axk.plot(t, R0 * (m / t)**2, 'r--') scaling = R0 / (t * t * np.maximum( 1 - 2 * (t / T)**2 * (1 + 2 * (t / T)**2)**(t / 2 - 1), 1e-5)) break_p = np.where((scaling[2:] > scaling[1:-1]) & (scaling[:-2] > scaling[1:-1]))[0] + 1 axk.plot(t, scaling, "g-.", label="theoretical speedup") axk.vlines(t[break_p], .1, 100000, "g", linestyle="-", linewidth=2) axk.set_xlim((m * .7, 1.7 * M)) axk.set_ylim((.5 * l, 1.7 * L)) axk.set_title("$T={}$".format(T), fontsize="x-large") # if i == 0: axk.legend(fontsize="large") axk.set_ylim((.2 * l, 1.7 * L)) tt = 8 axk.text(tt, .4 * R0 * (m / tt)**2, "quadratic", rotation=-22) axk.text(tt, R0 * m / tt, "linear", rotation=-14, bbox=dict(facecolor="white", edgecolor="white")) axk.text(.9 * t[break_p], .7 * R0 * m / tt, "$M^*$", rotation=0, bbox=dict(facecolor="w", edgecolor="w")) axk.minorticks_off() axk.set_xticks(n_jobs) axk.set_xticklabels(n_jobs) axk.set_xlabel("# cores $M$", fontsize="x-large") axk.set_ylabel("Runtime (s)", fontsize="x-large") axk.set_xticks([]) axk.set_xticklabels([], []) axk.set_yticks([]) axk.set_yticklabels([], []) plt.subplots_adjust(left=.1, right=.99, top=.95, bottom=.1) plt.show() input()
def compare_met(T=80, K=10, save_dir=None, max_iter=5e6, timeout=7200, n_jobs=3, hostfile=None, display=True, debug=0): '''Run DICOD algorithm for a certain problem with different value for n_jobs and store the runtime in csv files if given a save_dir. Parameters ---------- T: int, optional (default: 80) Size of the generated problems save_dir: str, optional (default: None) If not None, all the runtimes will be saved in csv files contained in the given directory. The directory must exist. This will create a file for each problem size T and save the Pb number, the number of core and the runtime computed in two different ways. max_iter: int, optional (default: 5e6) maximal number of iteration run by the algorithms timeout: int, optional (default: 7200) maximal running time for each algorithm. The default timeout is 2 hours n_jobs: int , optional (default: 3) Maximal number of jobs used for distributed algorithms hostfile: str, optional (default: None) hostfile used to launch MPI jobs debug: int, optional (default:0) The greater it is, the more verbose the algorithm ''' common_args = dict(logging=True, log_rate='log1.6', max_iter=max_iter, timeout=timeout, debug=debug, tol=1e-4) S = 200 d = 7 lmbd = 1 noise_level = .1 pb = fun_rand_problem(T, S, K, d, lmbd, noise_level, seed=42) if save_dir is not None: save_dir = os.path.join("save_exp", save_dir) if not os.path.exists(save_dir): os.mkdir(save_dir) file_name = 'cost_curves_T{}_K{}_njobs{}.pkl'.format(T, K, n_jobs) file_name = os.path.join(save_dir, file_name) from collections import OrderedDict algos = OrderedDict() algos['DICOD$_{{{}}}$'.format(n_jobs // 2)] = (DICOD(n_jobs=n_jobs // 2, hostfile=hostfile, **common_args), 'ms-') algos['DICOD$_{{{}}}$'.format(n_jobs)] = (DICOD(n_jobs=n_jobs, hostfile=hostfile, **common_args), 'bH-') algos['CD'] = (DICOD(n_jobs=1, hostfile=hostfile, **common_args), 'rd-') algos['RCD'] = (DICOD(algorithm=1, n_jobs=1, hostfile=hostfile, patience=5e5, **common_args), 'cd-') algos['Fista'] = (FISTA(fixe=True, **common_args), 'y*-') # algos['FSS'] = (FSS(n_zero_coef=40, **common_args), 'go-') algos['FCSC'] = (FCSC(tau=1.01, **common_args), 'k.-') algos['LGCD$_{{{}}}$'.format(n_jobs)] = (DICOD(n_jobs=1, use_seg=n_jobs, hostfile=hostfile, **common_args), 'c^-') algos['LGCD$_{{{}}}$'.format(n_jobs * 10)] = (DICOD(n_jobs=1, use_seg=n_jobs * 10, hostfile=hostfile, **common_args), 'c^-') curves = {} if save_dir is not None: try: with open(file_name, 'rb') as f: curves = pickle.load(f) except FileNotFoundError: pass for name, (algo, _) in algos.items(): pb.reset() log.info('=' * 10 + ' {} '.format(name) + '=' * 10) algo.fit(pb) curves[name] = algo.cost_curve if save_dir is not None: # Try loading previous values try: with open(file_name, 'rb') as f: o_curves = pickle.load(f) except FileNotFoundError: o_curves = {} o_curves[name] = curves[name] curves = o_curves with open(file_name, 'wb') as f: pickle.dump(o_curves, f) import IPython IPython.embed()
def scaling_lmbd(T=300, n_jobs=75, n_rep=10, save_dir=None, max_iter=1e8, timeout=7200, hostfile=None, lgg=False, optimizer="dicod", debug=0, seed=None): '''Run DICOD algorithm for a certain problem with different value for lmbd and store the runtime in csv files if given a save_dir. Parameters ---------- T: int, optional (default: 300) Size of the generated problems n_rep: int, optional (default: 10) Number of different problem solved for all the different number of cores. save_dir: str, optional (default: None) If not None, all the runtimes will be saved in csv files contained in the given directory. The directory must exist. This will create a file for each problem size T and save the Pb number, the number of core and the runtime computed in two different ways. max_iter: int, optional (default: 5e6) maximal number of iteration run by DICOD timeout: int, optional (default: 7200) maximal running time for DICOD. The default timeout is 2 hours hostfile: str, optional (default: None) hostfile for the openMPI API to connect to the other running server to spawn the processes over different nodes lgg: bool, optional (default: False) If set to true, enable the logging of the iteration cost during the run. It might slow down a bit the execution time and the collection of the results optimizer: str, optional (default: 'dicod') Algorithm used to compute the CSC solution. Should be in {'dicod', 'fista'}. debug: int, optional (default:0) The greater it is, the more verbose the algorithm seed: int, optional (default:None) seed the rng of numpy to obtain fixed set of problems ''' # Make sure the output directory exists if save_dir is not None and not os.path.exists(save_dir): os.mkdir(save_dir) fname = 'runtimes_lmbd_{}_{}.csv'.format(T, optimizer) fname = os.path.join(save_dir, fname) print(fname) # Set the problem arguments S = 150 K = 10 d = 7 noise_level = 1 optimizer_kwargs = dict(logging=lgg, log_rate='log1.6', max_iter=max_iter, timeout=timeout, debug=debug, tol=1e-2) # Set the solver arguments backend = None outer_jobs = n_jobs if optimizer == "lgcd": optimizer_kwargs['use_seg'] = T // 2 optimizer_kwargs['algorithm'] = ALGO_GS optimizer_kwargs['hostfile'] = hostfile backend = "threading" file_lock = threading.Lock() elif optimizer == "dicod": optimizer_kwargs['hostfile'] = hostfile outer_jobs = 1 file_lock = DummyCtx() optimizer = DICOD(None, n_jobs=n_jobs, use_seg=1, **optimizer_kwargs) elif optimizer == "fista": optimizer_kwargs['fixe'] = True file_lock = FileLock(fname) else: raise RuntimeError("Unknown optimizer {}".format(optimizer)) rng = np.random.RandomState(seed) lmbds = np.logspace(-6, np.log10(.8), 15) lmbds = lmbds[::-1] list_args_pb = [] for j in range(n_rep): seed_pb = rng.randint(4294967295) list_args_pb += [(j, (T, S, K, d, 1000, noise_level), seed_pb)] grid_args = itertools.product(list_args_pb, lmbds) cached_run_one = mem.cache(run_one, ignore=['file_lock']) runtimes = Parallel(n_jobs=outer_jobs, backend=backend)( delayed(cached_run_one)(args_pb, lmbd, optimizer, optimizer_kwargs, fname, file_lock) for args_pb, lmbd in grid_args) print(runtimes)