コード例 #1
0
    def setUp(self):
        """
        Set up linear ODE (i.e. one-dim, one parameter) and one evalpt.
        """
        # Set Model Parameters
        odeparam = 1.
        y0, y0_unc = 1.0, 0 
        t0, tmax = 0.0, 1.25

        # Set Method Parameters
        q = 1
        h = 0.1

        # Set up and solve ODE
        ibm = statespace.IBM(q=q, dim=1)
        solver = linsolve.LinearisedODESolver(ibm)
        ivp = linode.LinearODE(t0, tmax, odeparam, y0, y0_unc)
        tsteps, means, __, rhs_parts, uncerts = solver.solve(ivp, stepsize=h)
        self.mean = odesolver.get_trajectory(means, 0, 0)

        # Set up BM and IBM covariance matrices
        evalpt = np.array([tsteps[-1]])
        derdat = (tsteps, rhs_parts, 0.)

        const, jacob = linearisation.compute_linearisation(
            ssm=ibm, initial_value=y0,
            derivative_data=derdat, prdct_tsteps=evalpt)

        # Compute GP Estimation of filter mean at t=tmax
        self.postmean = const + np.dot(jacob[:, 0], odeparam)
コード例 #2
0
    def test_uncert_not_scalar(self):
        """
        We test whether the uncertainty (third element of derivative_data)
        is only accepted as a scalar.
        """
        # Set Model Parameters
        odeparam = 1.
        y0, y0_unc = 1.0, 0 
        t0, tmax = 0.0, 1.25

        # Set Method Parameters
        q = 1
        h = 0.1

        # Set up and solve ODE
        ibm = statespace.IBM(q=q, dim=1)
        solver = linsolve.LinearisedODESolver(ibm)
        ivp = linode.LinearODE(t0, tmax, odeparam, y0, y0_unc)
        tsteps, means, __, rhs_parts, should_not_work = solver.solve(ivp, stepsize=h)
        self.mean = odesolver.get_trajectory(means, 0, 0)

        # Set up BM and IBM covariance matrices
        evalpt = np.array(tsteps[[-1]])
        with self.assertRaises(TypeError):
            derdat = (tsteps, rhs_parts, should_not_work)
            linearisation.compute_linearisation(ssm=ibm, initial_value=y0,
                                                derivative_data=derdat,
                                                prdct_tsteps=evalpt)
コード例 #3
0
 def setUp(self):
     """
     Test passes if scalar LinearODE can be successfully initialised.
     """
     self.lin_ode = linode.LinearODE(t0=0.,
                                     tmax=1.,
                                     params=3.,
                                     initval=0.1,
                                     initval_unc=2.1)
 def setUp(self):
     """
     Set up linear ode and solve with stepsize h = 0.1.
     """
     prior = stsp.IBM(q=1, dim=1)
     self.solver = linsolver.LinearisedODESolver(prior, filtertype="kalman")
     self.ode = linode.LinearODE(t0=0.0, tmax=1.2, params=2.0, initval=4.1)
     self.h = 0.1
     output = self.solver.solve(self.ode, self.h)
     self.tsteps, self.means, self.stdevs, __, __ = output
 def setUp(self):
     """
     Set up linear ODE and linearised ODESolver.
     """
     prior = stsp.IBM(q=1, dim=1)
     solver = linsolver.LinearisedODESolver(prior, filtertype="kalman")
     ode = linode.LinearODE(t0=0.0, tmax=1.2, params=2.0, initval=4.1)
     h = 0.1
     output = solver.solve(ode, h)
     __, __, __, self.rhs_parts, self.uncert = output
コード例 #6
0
 def test_multidim_init_fails_initval(self):
     """
     Test passes if multidimensional initial value is rejected
     """
     initval = np.ones(2)
     with self.assertRaises(TypeError):
         linode.LinearODE(t0=0.,
                          tmax=1.,
                          params=1.0,
                          initval=initval,
                          initval_unc=2.1)
コード例 #7
0
 def test_multidim_init_fails_params(self):
     """
     Test passes if matrix-valued parameter is rejected.
     """
     params = np.eye(2)
     with self.assertRaises(TypeError):
         linode.LinearODE(t0=0.,
                          tmax=1.,
                          params=params,
                          initval=0.1,
                          initval_unc=2.1)
 def test_inconsistent_prior_and_ssm(self):
     """
     Prior uses dim=2, so a scalar ODE should raise an AssertionError.
     """
     solver = linsolver.LinearisedODESolver(self.working_2d_prior,
                                            self.working_filtertype)
     wrong_dimensional_ode = linode.LinearODE(t0=0.,
                                              tmax=1.,
                                              params=1.123,
                                              initval=1.)
     with self.assertRaises(AssertionError):
         solver.solve(wrong_dimensional_ode, stepsize=0.1)
コード例 #9
0
ivpnoise = 0.01
thetatrue = 0.25

# Set Method Parameters
q = 1
h = 0.2
nsamps = 25
init_theta = 0.99 * np.ones(1)
ibm = statespace.IBM(q=q, dim=1)
solver = linsolver.LinearisedODESolver(ibm)
pwidth = 0.004

# Create Data and Jacobian
ivp = linode.LinearODE(initial_time,
                       end_time,
                       params=thetatrue,
                       initval=initial_value,
                       initval_unc=0.0)
evalpt, data = create_data(solver, ivp, thetatrue, 1e-04, ivpnoise)
tsteps, __, __, __, __ = solver.solve(ivp, stepsize=h)
evalpt = np.array(tsteps[[-1]])
kernel_prefactor = linearisation.compute_kernel_prefactor(
    ibm, 0.0, tsteps, evalpt)

# Sample states from Markov chain
ivp.params = init_theta
lklhd_grad = InvProblemLklhd(evalpt,
                             data,
                             solver,
                             ivp,
                             h,