コード例 #1
0
ファイル: views.py プロジェクト: vjtagaltera/nvidia-DIGITS
def create():
    """
    Create a new ImageClassificationModelJob

    Returns JSON when requested: {job_id,name,status} or {errors:[]}
    """
    form = ImageClassificationModelForm()
    form.dataset.choices = get_datasets()
    form.standard_networks.choices = get_standard_networks()
    form.standard_networks.default = get_default_standard_network()
    form.previous_networks.choices = get_previous_networks()
    form.pretrained_networks.choices = get_pretrained_networks()

    prev_network_snapshots = get_previous_network_snapshots()

    # Is there a request to clone a job with ?clone=<job_id>
    fill_form_if_cloned(form)

    if not form.validate_on_submit():
        if request_wants_json():
            return flask.jsonify({'errors': form.errors}), 400
        else:
            return flask.render_template('models/images/classification/new.html',
                                         form=form,
                                         frameworks=frameworks.get_frameworks(),
                                         previous_network_snapshots=prev_network_snapshots,
                                         previous_networks_fullinfo=get_previous_networks_fulldetails(),
                                         pretrained_networks_fullinfo=get_pretrained_networks_fulldetails(),
                                         multi_gpu=config_value('caffe')['multi_gpu'],
                                         ), 400

    datasetJob = scheduler.get_job(form.dataset.data)
    if not datasetJob:
        raise werkzeug.exceptions.BadRequest(
            'Unknown dataset job_id "%s"' % form.dataset.data)

    # sweeps will be a list of the the permutations of swept fields
    # Get swept learning_rate
    sweeps = [{'learning_rate': v} for v in form.learning_rate.data]
    add_learning_rate = len(form.learning_rate.data) > 1

    # Add swept batch_size
    sweeps = [dict(s.items() + [('batch_size', bs)]) for bs in form.batch_size.data for s in sweeps[:]]
    add_batch_size = len(form.batch_size.data) > 1
    n_jobs = len(sweeps)

    jobs = []
    for sweep in sweeps:
        # Populate the form with swept data to be used in saving and
        # launching jobs.
        form.learning_rate.data = sweep['learning_rate']
        form.batch_size.data = sweep['batch_size']

        # Augment Job Name
        extra = ''
        if add_learning_rate:
            extra += ' learning_rate:%s' % str(form.learning_rate.data[0])
        if add_batch_size:
            extra += ' batch_size:%d' % form.batch_size.data[0]

        job = None
        try:
            job = ImageClassificationModelJob(
                username=utils.auth.get_username(),
                name=form.model_name.data + extra,
                group=form.group_name.data,
                dataset_id=datasetJob.id(),
            )
            # get handle to framework object
            fw = frameworks.get_framework_by_id(form.framework.data)

            pretrained_model = None
            if form.method.data == 'standard':
                found = False

                # can we find it in standard networks?
                network_desc = fw.get_standard_network_desc(form.standard_networks.data)
                if network_desc:
                    found = True
                    network = fw.get_network_from_desc(network_desc)

                if not found:
                    raise werkzeug.exceptions.BadRequest(
                        'Unknown standard model "%s"' % form.standard_networks.data)
            elif form.method.data == 'previous':
                old_job = scheduler.get_job(form.previous_networks.data)
                if not old_job:
                    raise werkzeug.exceptions.BadRequest(
                        'Job not found: %s' % form.previous_networks.data)

                use_same_dataset = (old_job.dataset_id == job.dataset_id)
                network = fw.get_network_from_previous(old_job.train_task().network, use_same_dataset)

                for choice in form.previous_networks.choices:
                    if choice[0] == form.previous_networks.data:
                        epoch = float(flask.request.form['%s-snapshot' % form.previous_networks.data])
                        if epoch == 0:
                            pass
                        elif epoch == -1:
                            pretrained_model = old_job.train_task().pretrained_model
                        else:
                            # verify snapshot exists
                            pretrained_model = old_job.train_task().get_snapshot(epoch, download=True)
                            if pretrained_model is None:
                                raise werkzeug.exceptions.BadRequest(
                                    "For the job %s, selected pretrained_model for epoch %d is invalid!"
                                    % (form.previous_networks.data, epoch))
                            # the first is the actual file if a list is returned, other should be meta data
                            if isinstance(pretrained_model, list):
                                pretrained_model = pretrained_model[0]

                            if not (os.path.exists(pretrained_model)):
                                raise werkzeug.exceptions.BadRequest(
                                    "Pretrained_model for the selected epoch doesn't exist. "
                                    "May be deleted by another user/process. "
                                    "Please restart the server to load the correct pretrained_model details.")
                            # get logical path
                            pretrained_model = old_job.train_task().get_snapshot(epoch)
                        break

            elif form.method.data == 'pretrained':
                pretrained_job = scheduler.get_job(form.pretrained_networks.data)
                model_def_path = pretrained_job.get_model_def_path()
                weights_path = pretrained_job.get_weights_path()

                network = fw.get_network_from_path(model_def_path)
                pretrained_model = weights_path

            elif form.method.data == 'custom':
                network = fw.get_network_from_desc(form.custom_network.data)
                pretrained_model = form.custom_network_snapshot.data.strip()
            else:
                raise werkzeug.exceptions.BadRequest(
                    'Unrecognized method: "%s"' % form.method.data)

            policy = {'policy': form.lr_policy.data}
            if form.lr_policy.data == 'fixed':
                pass
            elif form.lr_policy.data == 'step':
                policy['stepsize'] = form.lr_step_size.data
                policy['gamma'] = form.lr_step_gamma.data
            elif form.lr_policy.data == 'multistep':
                policy['stepvalue'] = form.lr_multistep_values.data
                policy['gamma'] = form.lr_multistep_gamma.data
            elif form.lr_policy.data == 'exp':
                policy['gamma'] = form.lr_exp_gamma.data
            elif form.lr_policy.data == 'inv':
                policy['gamma'] = form.lr_inv_gamma.data
                policy['power'] = form.lr_inv_power.data
            elif form.lr_policy.data == 'poly':
                policy['power'] = form.lr_poly_power.data
            elif form.lr_policy.data == 'sigmoid':
                policy['stepsize'] = form.lr_sigmoid_step.data
                policy['gamma'] = form.lr_sigmoid_gamma.data
            else:
                raise werkzeug.exceptions.BadRequest(
                    'Invalid learning rate policy')

            if config_value('caffe')['multi_gpu']:
                if form.select_gpus.data:
                    selected_gpus = [str(gpu) for gpu in form.select_gpus.data]
                    gpu_count = None
                elif form.select_gpu_count.data:
                    gpu_count = form.select_gpu_count.data
                    selected_gpus = None
                else:
                    gpu_count = 1
                    selected_gpus = None
            else:
                if form.select_gpu.data == 'next':
                    gpu_count = 1
                    selected_gpus = None
                else:
                    selected_gpus = [str(form.select_gpu.data)]
                    gpu_count = None

            # Set up data augmentation structure
            data_aug = {}
            data_aug['flip'] = form.aug_flip.data
            data_aug['quad_rot'] = form.aug_quad_rot.data
            data_aug['rot'] = form.aug_rot.data
            data_aug['scale'] = form.aug_scale.data
            data_aug['noise'] = form.aug_noise.data
            data_aug['contrast'] = form.aug_contrast.data
            data_aug['whitening'] = form.aug_whitening.data
            data_aug['hsv_use'] = form.aug_hsv_use.data
            data_aug['hsv_h'] = form.aug_hsv_h.data
            data_aug['hsv_s'] = form.aug_hsv_s.data
            data_aug['hsv_v'] = form.aug_hsv_v.data

            # Python Layer File may be on the server or copied from the client.
            fs.copy_python_layer_file(
                bool(form.python_layer_from_client.data),
                job.dir(),
                (flask.request.files[form.python_layer_client_file.name]
                 if form.python_layer_client_file.name in flask.request.files
                 else ''), form.python_layer_server_file.data)

            job.tasks.append(fw.create_train_task(
                job=job,
                dataset=datasetJob,
                train_epochs=form.train_epochs.data,
                snapshot_interval=form.snapshot_interval.data,
                learning_rate=form.learning_rate.data[0],
                lr_policy=policy,
                gpu_count=gpu_count,
                selected_gpus=selected_gpus,
                batch_size=form.batch_size.data[0],
                batch_accumulation=form.batch_accumulation.data,
                val_interval=form.val_interval.data,
                traces_interval=form.traces_interval.data,
                pretrained_model=pretrained_model,
                crop_size=form.crop_size.data,
                use_mean=form.use_mean.data,
                network=network,
                random_seed=form.random_seed.data,
                solver_type=form.solver_type.data,
                rms_decay=form.rms_decay.data,
                shuffle=form.shuffle.data,
                data_aug=data_aug,
            )
            )

            # Save form data with the job so we can easily clone it later.
            save_form_to_job(job, form)

            jobs.append(job)
            scheduler.add_job(job)
            if n_jobs == 1:
                if request_wants_json():
                    return flask.jsonify(job.json_dict())
                else:
                    return flask.redirect(flask.url_for('digits.model.views.show', job_id=job.id()))

        except:
            if job:
                scheduler.delete_job(job)
            raise

    if request_wants_json():
        return flask.jsonify(jobs=[j.json_dict() for j in jobs])

    # If there are multiple jobs launched, go to the home page.
    return flask.redirect('/')
コード例 #2
0
ファイル: views.py プロジェクト: mersoy/DIGITS
def generic_image_model_create():
    """
    Create a new GenericImageModelJob

    Returns JSON when requested: {job_id,name,status} or {errors:[]}
    """
    form = GenericImageModelForm()
    form.dataset.choices = get_datasets()
    form.standard_networks.choices = []
    form.previous_networks.choices = get_previous_networks()

    prev_network_snapshots = get_previous_network_snapshots()

    ## Is there a request to clone a job with ?clone=<job_id>
    fill_form_if_cloned(form)

    if not form.validate_on_submit():
        if request_wants_json():
            return flask.jsonify({'errors': form.errors}), 400
        else:
            return flask.render_template('models/images/generic/new.html',
                    form = form,
                    frameworks = frameworks.get_frameworks(),
                    previous_network_snapshots = prev_network_snapshots,
                    previous_networks_fullinfo = get_previous_networks_fulldetails(),
                    multi_gpu = config_value('caffe_root')['multi_gpu'],
                    ), 400

    datasetJob = scheduler.get_job(form.dataset.data)
    if not datasetJob:
        raise werkzeug.exceptions.BadRequest(
                'Unknown dataset job_id "%s"' % form.dataset.data)

    job = None
    try:
        job = GenericImageModelJob(
                name        = form.model_name.data,
                dataset_id  = datasetJob.id(),
                )

        # get framework (hard-coded to caffe for now)
        fw = frameworks.get_framework_by_id(form.framework.data)

        pretrained_model = None
        #if form.method.data == 'standard':
        if form.method.data == 'previous':
            old_job = scheduler.get_job(form.previous_networks.data)
            if not old_job:
                raise werkzeug.exceptions.BadRequest(
                        'Job not found: %s' % form.previous_networks.data)

            network = fw.get_network_from_previous(old_job.train_task().network)

            for choice in form.previous_networks.choices:
                if choice[0] == form.previous_networks.data:
                    epoch = float(flask.request.form['%s-snapshot' % form.previous_networks.data])
                    if epoch == 0:
                        pass
                    elif epoch == -1:
                        pretrained_model = old_job.train_task().pretrained_model
                    else:
                        for filename, e in old_job.train_task().snapshots:
                            if e == epoch:
                                pretrained_model = filename
                                break

                        if pretrained_model is None:
                            raise werkzeug.exceptions.BadRequest(
                                    "For the job %s, selected pretrained_model for epoch %d is invalid!"
                                    % (form.previous_networks.data, epoch))
                        if not (os.path.exists(pretrained_model)):
                            raise werkzeug.exceptions.BadRequest(
                                    "Pretrained_model for the selected epoch doesn't exists. May be deleted by another user/process. Please restart the server to load the correct pretrained_model details")
                    break

        elif form.method.data == 'custom':
            network = fw.get_network_from_desc(form.custom_network.data)
            pretrained_model = form.custom_network_snapshot.data.strip()
        else:
            raise werkzeug.exceptions.BadRequest(
                    'Unrecognized method: "%s"' % form.method.data)

        policy = {'policy': form.lr_policy.data}
        if form.lr_policy.data == 'fixed':
            pass
        elif form.lr_policy.data == 'step':
            policy['stepsize'] = form.lr_step_size.data
            policy['gamma'] = form.lr_step_gamma.data
        elif form.lr_policy.data == 'multistep':
            policy['stepvalue'] = form.lr_multistep_values.data
            policy['gamma'] = form.lr_multistep_gamma.data
        elif form.lr_policy.data == 'exp':
            policy['gamma'] = form.lr_exp_gamma.data
        elif form.lr_policy.data == 'inv':
            policy['gamma'] = form.lr_inv_gamma.data
            policy['power'] = form.lr_inv_power.data
        elif form.lr_policy.data == 'poly':
            policy['power'] = form.lr_poly_power.data
        elif form.lr_policy.data == 'sigmoid':
            policy['stepsize'] = form.lr_sigmoid_step.data
            policy['gamma'] = form.lr_sigmoid_gamma.data
        else:
            raise werkzeug.exceptions.BadRequest(
                    'Invalid learning rate policy')

        if config_value('caffe_root')['multi_gpu']:
            if form.select_gpu_count.data:
                gpu_count = form.select_gpu_count.data
                selected_gpus = None
            else:
                selected_gpus = [str(gpu) for gpu in form.select_gpus.data]
                gpu_count = None
        else:
            if form.select_gpu.data == 'next':
                gpu_count = 1
                selected_gpus = None
            else:
                selected_gpus = [str(form.select_gpu.data)]
                gpu_count = None

        # Python Layer File may be on the server or copied from the client.
        fs.copy_python_layer_file(
            bool(form.python_layer_from_client.data),
            job.dir(),
            (flask.request.files[form.python_layer_client_file.name]
             if form.python_layer_client_file.name in flask.request.files
             else ''), form.python_layer_server_file.data)

        job.tasks.append(fw.create_train_task(
                    job_dir         = job.dir(),
                    dataset         = datasetJob,
                    train_epochs    = form.train_epochs.data,
                    snapshot_interval   = form.snapshot_interval.data,
                    learning_rate   = form.learning_rate.data,
                    lr_policy       = policy,
                    gpu_count       = gpu_count,
                    selected_gpus   = selected_gpus,
                    batch_size      = form.batch_size.data,
                    val_interval    = form.val_interval.data,
                    pretrained_model= pretrained_model,
                    crop_size       = form.crop_size.data,
                    use_mean        = form.use_mean.data,
                    network         = network,
                    random_seed     = form.random_seed.data,
                    solver_type     = form.solver_type.data,
                    shuffle         = form.shuffle.data,
                    )
                )

        ## Save form data with the job so we can easily clone it later.
        save_form_to_job(job, form)

        scheduler.add_job(job)
        if request_wants_json():
            return flask.jsonify(job.json_dict())
        else:
            return flask.redirect(flask.url_for('models_show', job_id=job.id()))

    except:
        if job:
            scheduler.delete_job(job)
        raise
コード例 #3
0
ファイル: views.py プロジェクト: klqulei/DIGITS
def create():
    """
    Create a new ImageClassificationModelJob

    Returns JSON when requested: {job_id,name,status} or {errors:[]}
    """
    form = ImageClassificationModelForm()
    form.dataset.choices = get_datasets()
    form.standard_networks.choices = get_standard_networks()
    form.standard_networks.default = get_default_standard_network()
    form.previous_networks.choices = get_previous_networks()

    prev_network_snapshots = get_previous_network_snapshots()

    ## Is there a request to clone a job with ?clone=<job_id>
    fill_form_if_cloned(form)

    if not form.validate_on_submit():
        if request_wants_json():
            return flask.jsonify({'errors': form.errors}), 400
        else:
            return flask.render_template('models/images/classification/new.html',
                    form = form,
                    frameworks = frameworks.get_frameworks(),
                    previous_network_snapshots = prev_network_snapshots,
                    previous_networks_fullinfo = get_previous_networks_fulldetails(),
                    multi_gpu = config_value('caffe_root')['multi_gpu'],
                    ), 400

    datasetJob = scheduler.get_job(form.dataset.data)
    if not datasetJob:
        raise werkzeug.exceptions.BadRequest(
                'Unknown dataset job_id "%s"' % form.dataset.data)

    job = None
    try:
        job = ImageClassificationModelJob(
                username    = utils.auth.get_username(),
                name        = form.model_name.data,
                dataset_id  = datasetJob.id(),
                )
        # get handle to framework object
        fw = frameworks.get_framework_by_id(form.framework.data)

        pretrained_model = None
        if form.method.data == 'standard':
            found = False

            # can we find it in standard networks?
            network_desc = fw.get_standard_network_desc(form.standard_networks.data)
            if network_desc:
                found = True
                network = fw.get_network_from_desc(network_desc)

            if not found:
                raise werkzeug.exceptions.BadRequest(
                        'Unknown standard model "%s"' % form.standard_networks.data)
        elif form.method.data == 'previous':
            old_job = scheduler.get_job(form.previous_networks.data)
            if not old_job:
                raise werkzeug.exceptions.BadRequest(
                        'Job not found: %s' % form.previous_networks.data)

            use_same_dataset = (old_job.dataset_id == job.dataset_id)
            network = fw.get_network_from_previous(old_job.train_task().network, use_same_dataset)

            for choice in form.previous_networks.choices:
                if choice[0] == form.previous_networks.data:
                    epoch = float(flask.request.form['%s-snapshot' % form.previous_networks.data])
                    if epoch == 0:
                        pass
                    elif epoch == -1:
                        pretrained_model = old_job.train_task().pretrained_model
                    else:
                        for filename, e in old_job.train_task().snapshots:
                            if e == epoch:
                                pretrained_model = filename
                                break

                        if pretrained_model is None:
                            raise werkzeug.exceptions.BadRequest(
                                    "For the job %s, selected pretrained_model for epoch %d is invalid!"
                                    % (form.previous_networks.data, epoch))
                        if not (os.path.exists(pretrained_model)):
                            raise werkzeug.exceptions.BadRequest(
                                    "Pretrained_model for the selected epoch doesn't exists. May be deleted by another user/process. Please restart the server to load the correct pretrained_model details")
                    break

        elif form.method.data == 'custom':
            network = fw.get_network_from_desc(form.custom_network.data)
            pretrained_model = form.custom_network_snapshot.data.strip()
        else:
            raise werkzeug.exceptions.BadRequest(
                    'Unrecognized method: "%s"' % form.method.data)

        policy = {'policy': form.lr_policy.data}
        if form.lr_policy.data == 'fixed':
            pass
        elif form.lr_policy.data == 'step':
            policy['stepsize'] = form.lr_step_size.data
            policy['gamma'] = form.lr_step_gamma.data
        elif form.lr_policy.data == 'multistep':
            policy['stepvalue'] = form.lr_multistep_values.data
            policy['gamma'] = form.lr_multistep_gamma.data
        elif form.lr_policy.data == 'exp':
            policy['gamma'] = form.lr_exp_gamma.data
        elif form.lr_policy.data == 'inv':
            policy['gamma'] = form.lr_inv_gamma.data
            policy['power'] = form.lr_inv_power.data
        elif form.lr_policy.data == 'poly':
            policy['power'] = form.lr_poly_power.data
        elif form.lr_policy.data == 'sigmoid':
            policy['stepsize'] = form.lr_sigmoid_step.data
            policy['gamma'] = form.lr_sigmoid_gamma.data
        else:
            raise werkzeug.exceptions.BadRequest(
                    'Invalid learning rate policy')

        if config_value('caffe_root')['multi_gpu']:
            if form.select_gpus.data:
                selected_gpus = [str(gpu) for gpu in form.select_gpus.data]
                gpu_count = None
            elif form.select_gpu_count.data:
                gpu_count = form.select_gpu_count.data
                selected_gpus = None
            else:
                gpu_count = 1
                selected_gpus = None
        else:
            if form.select_gpu.data == 'next':
                gpu_count = 1
                selected_gpus = None
            else:
                selected_gpus = [str(form.select_gpu.data)]
                gpu_count = None

        # Python Layer File may be on the server or copied from the client.
        fs.copy_python_layer_file(
            bool(form.python_layer_from_client.data),
            job.dir(),
            (flask.request.files[form.python_layer_client_file.name]
             if form.python_layer_client_file.name in flask.request.files
             else ''), form.python_layer_server_file.data)

        job.tasks.append(fw.create_train_task(
                    job_dir         = job.dir(),
                    dataset         = datasetJob,
                    train_epochs    = form.train_epochs.data,
                    snapshot_interval   = form.snapshot_interval.data,
                    learning_rate   = form.learning_rate.data,
                    lr_policy       = policy,
                    gpu_count       = gpu_count,
                    selected_gpus   = selected_gpus,
                    batch_size      = form.batch_size.data,
                    val_interval    = form.val_interval.data,
                    pretrained_model= pretrained_model,
                    crop_size       = form.crop_size.data,
                    use_mean        = form.use_mean.data,
                    network         = network,
                    random_seed     = form.random_seed.data,
                    solver_type     = form.solver_type.data,
                    shuffle         = form.shuffle.data,
                    )
                )

        ## Save form data with the job so we can easily clone it later.
        save_form_to_job(job, form)

        scheduler.add_job(job)
        if request_wants_json():
            return flask.jsonify(job.json_dict())
        else:
            return flask.redirect(flask.url_for('digits.model.views.show', job_id=job.id()))

    except:
        if job:
            scheduler.delete_job(job)
        raise
コード例 #4
0
ファイル: views.py プロジェクト: Alandougherty/DIGITS
def create(extension_id=None):
    """
    Create a new GenericImageModelJob

    Returns JSON when requested: {job_id,name,status} or {errors:[]}
    """
    form = GenericImageModelForm()
    form.dataset.choices = get_datasets(extension_id)
    form.standard_networks.choices = []
    form.previous_networks.choices = get_previous_networks()

    prev_network_snapshots = get_previous_network_snapshots()

    ## Is there a request to clone a job with ?clone=<job_id>
    fill_form_if_cloned(form)

    if not form.validate_on_submit():
        if request_wants_json():
            return flask.jsonify({'errors': form.errors}), 400
        else:
            return flask.render_template(
                'models/images/generic/new.html',
                extension_id=extension_id,
                extension_title=extensions.data.get_extension(extension_id).get_title() if extension_id else None,
                form= form,
                frameworks=frameworks.get_frameworks(),
                previous_network_snapshots=prev_network_snapshots,
                previous_networks_fullinfo=get_previous_networks_fulldetails(),
                multi_gpu=config_value('caffe_root')['multi_gpu'],
                ), 400

    datasetJob = scheduler.get_job(form.dataset.data)
    if not datasetJob:
        raise werkzeug.exceptions.BadRequest(
                'Unknown dataset job_id "%s"' % form.dataset.data)

    # sweeps will be a list of the the permutations of swept fields
    # Get swept learning_rate
    sweeps = [{'learning_rate': v} for v in form.learning_rate.data]
    add_learning_rate = len(form.learning_rate.data) > 1

    # Add swept batch_size
    sweeps = [dict(s.items() + [('batch_size', bs)]) for bs in form.batch_size.data for s in sweeps[:]]
    add_batch_size = len(form.batch_size.data) > 1
    n_jobs = len(sweeps)

    jobs = []
    for sweep in sweeps:
        # Populate the form with swept data to be used in saving and
        # launching jobs.
        form.learning_rate.data = sweep['learning_rate']
        form.batch_size.data = sweep['batch_size']

        # Augment Job Name
        extra = ''
        if add_learning_rate:
            extra += ' learning_rate:%s' % str(form.learning_rate.data[0])
        if add_batch_size:
            extra += ' batch_size:%d' % form.batch_size.data[0]

        job = None
        try:
            job = GenericImageModelJob(
                    username    = utils.auth.get_username(),
                    name        = form.model_name.data + extra,
                    dataset_id  = datasetJob.id(),
                    )

            # get framework (hard-coded to caffe for now)
            fw = frameworks.get_framework_by_id(form.framework.data)

            pretrained_model = None
            #if form.method.data == 'standard':
            if form.method.data == 'previous':
                old_job = scheduler.get_job(form.previous_networks.data)
                if not old_job:
                    raise werkzeug.exceptions.BadRequest(
                            'Job not found: %s' % form.previous_networks.data)

                use_same_dataset = (old_job.dataset_id == job.dataset_id)
                network = fw.get_network_from_previous(old_job.train_task().network, use_same_dataset)

                for choice in form.previous_networks.choices:
                    if choice[0] == form.previous_networks.data:
                        epoch = float(flask.request.form['%s-snapshot' % form.previous_networks.data])
                        if epoch == 0:
                            pass
                        elif epoch == -1:
                            pretrained_model = old_job.train_task().pretrained_model
                        else:
                            for filename, e in old_job.train_task().snapshots:
                                if e == epoch:
                                    pretrained_model = filename
                                    break

                            if pretrained_model is None:
                                raise werkzeug.exceptions.BadRequest(
                                        "For the job %s, selected pretrained_model for epoch %d is invalid!"
                                        % (form.previous_networks.data, epoch))
                            if not (os.path.exists(pretrained_model)):
                                raise werkzeug.exceptions.BadRequest(
                                        "Pretrained_model for the selected epoch doesn't exists. May be deleted by another user/process. Please restart the server to load the correct pretrained_model details")
                        break

            elif form.method.data == 'custom':
                network = fw.get_network_from_desc(form.custom_network.data)
                pretrained_model = form.custom_network_snapshot.data.strip()
            else:
                raise werkzeug.exceptions.BadRequest(
                        'Unrecognized method: "%s"' % form.method.data)

            policy = {'policy': form.lr_policy.data}
            if form.lr_policy.data == 'fixed':
                pass
            elif form.lr_policy.data == 'step':
                policy['stepsize'] = form.lr_step_size.data
                policy['gamma'] = form.lr_step_gamma.data
            elif form.lr_policy.data == 'multistep':
                policy['stepvalue'] = form.lr_multistep_values.data
                policy['gamma'] = form.lr_multistep_gamma.data
            elif form.lr_policy.data == 'exp':
                policy['gamma'] = form.lr_exp_gamma.data
            elif form.lr_policy.data == 'inv':
                policy['gamma'] = form.lr_inv_gamma.data
                policy['power'] = form.lr_inv_power.data
            elif form.lr_policy.data == 'poly':
                policy['power'] = form.lr_poly_power.data
            elif form.lr_policy.data == 'sigmoid':
                policy['stepsize'] = form.lr_sigmoid_step.data
                policy['gamma'] = form.lr_sigmoid_gamma.data
            else:
                raise werkzeug.exceptions.BadRequest(
                        'Invalid learning rate policy')

            if config_value('caffe_root')['multi_gpu']:
                if form.select_gpu_count.data:
                    gpu_count = form.select_gpu_count.data
                    selected_gpus = None
                else:
                    selected_gpus = [str(gpu) for gpu in form.select_gpus.data]
                    gpu_count = None
            else:
                if form.select_gpu.data == 'next':
                    gpu_count = 1
                    selected_gpus = None
                else:
                    selected_gpus = [str(form.select_gpu.data)]
                    gpu_count = None

            # Python Layer File may be on the server or copied from the client.
            fs.copy_python_layer_file(
                bool(form.python_layer_from_client.data),
                job.dir(),
                (flask.request.files[form.python_layer_client_file.name]
                 if form.python_layer_client_file.name in flask.request.files
                 else ''), form.python_layer_server_file.data)

            job.tasks.append(fw.create_train_task(
                        job = job,
                        dataset = datasetJob,
                        train_epochs = form.train_epochs.data,
                        snapshot_interval = form.snapshot_interval.data,
                        learning_rate = form.learning_rate.data[0],
                        lr_policy = policy,
                        gpu_count = gpu_count,
                        selected_gpus = selected_gpus,
                        batch_size = form.batch_size.data[0],
                        batch_accumulation = form.batch_accumulation.data,
                        val_interval = form.val_interval.data,
                        pretrained_model = pretrained_model,
                        crop_size = form.crop_size.data,
                        use_mean = form.use_mean.data,
                        network = network,
                        random_seed = form.random_seed.data,
                        solver_type = form.solver_type.data,
                        shuffle = form.shuffle.data,
                        )
                    )

            ## Save form data with the job so we can easily clone it later.
            save_form_to_job(job, form)

            jobs.append(job)
            scheduler.add_job(job)
            if n_jobs == 1:
                if request_wants_json():
                    return flask.jsonify(job.json_dict())
                else:
                    return flask.redirect(flask.url_for('digits.model.views.show', job_id=job.id()))

        except:
            if job:
                scheduler.delete_job(job)
            raise

    if request_wants_json():
        return flask.jsonify(jobs=[job.json_dict() for job in jobs])

    # If there are multiple jobs launched, go to the home page.
    return flask.redirect('/')
コード例 #5
0
ファイル: views.py プロジェクト: zayedmohamed/DIGITS
def create():
    """
    Create a new GenericImageModelJob

    Returns JSON when requested: {job_id,name,status} or {errors:[]}
    """
    form = GenericImageModelForm()
    form.dataset.choices = get_datasets()
    form.standard_networks.choices = []
    form.previous_networks.choices = get_previous_networks()

    prev_network_snapshots = get_previous_network_snapshots()

    ## Is there a request to clone a job with ?clone=<job_id>
    fill_form_if_cloned(form)

    if not form.validate_on_submit():
        if request_wants_json():
            return flask.jsonify({'errors': form.errors}), 400
        else:
            return flask.render_template('models/images/generic/new.html',
                    form = form,
                    frameworks = frameworks.get_frameworks(),
                    previous_network_snapshots = prev_network_snapshots,
                    previous_networks_fullinfo = get_previous_networks_fulldetails(),
                    multi_gpu = config_value('caffe_root')['multi_gpu'],
                    ), 400

    datasetJob = scheduler.get_job(form.dataset.data)
    if not datasetJob:
        raise werkzeug.exceptions.BadRequest(
                'Unknown dataset job_id "%s"' % form.dataset.data)

    # sweeps will be a list of the the permutations of swept fields
    # Get swept learning_rate
    sweeps = [{'learning_rate': v} for v in form.learning_rate.data]
    add_learning_rate = len(form.learning_rate.data) > 1

    # Add swept batch_size
    sweeps = [dict(s.items() + [('batch_size', bs)]) for bs in form.batch_size.data for s in sweeps[:]]
    add_batch_size = len(form.batch_size.data) > 1
    n_jobs = len(sweeps)

    jobs = []
    for sweep in sweeps:
        # Populate the form with swept data to be used in saving and
        # launching jobs.
        form.learning_rate.data = sweep['learning_rate']
        form.batch_size.data = sweep['batch_size']

        # Augment Job Name
        extra = ''
        if add_learning_rate:
            extra += ' learning_rate:%s' % str(form.learning_rate.data[0])
        if add_batch_size:
            extra += ' batch_size:%d' % form.batch_size.data[0]

        job = None
        try:
            job = GenericImageModelJob(
                    username    = utils.auth.get_username(),
                    name        = form.model_name.data + extra,
                    dataset_id  = datasetJob.id(),
                    )

            # get framework (hard-coded to caffe for now)
            fw = frameworks.get_framework_by_id(form.framework.data)

            pretrained_model = None
            #if form.method.data == 'standard':
            if form.method.data == 'previous':
                old_job = scheduler.get_job(form.previous_networks.data)
                if not old_job:
                    raise werkzeug.exceptions.BadRequest(
                            'Job not found: %s' % form.previous_networks.data)

                use_same_dataset = (old_job.dataset_id == job.dataset_id)
                network = fw.get_network_from_previous(old_job.train_task().network, use_same_dataset)

                for choice in form.previous_networks.choices:
                    if choice[0] == form.previous_networks.data:
                        epoch = float(flask.request.form['%s-snapshot' % form.previous_networks.data])
                        if epoch == 0:
                            pass
                        elif epoch == -1:
                            pretrained_model = old_job.train_task().pretrained_model
                        else:
                            for filename, e in old_job.train_task().snapshots:
                                if e == epoch:
                                    pretrained_model = filename
                                    break

                            if pretrained_model is None:
                                raise werkzeug.exceptions.BadRequest(
                                        "For the job %s, selected pretrained_model for epoch %d is invalid!"
                                        % (form.previous_networks.data, epoch))
                            if not (os.path.exists(pretrained_model)):
                                raise werkzeug.exceptions.BadRequest(
                                        "Pretrained_model for the selected epoch doesn't exists. May be deleted by another user/process. Please restart the server to load the correct pretrained_model details")
                        break

            elif form.method.data == 'custom':
                network = fw.get_network_from_desc(form.custom_network.data)
                pretrained_model = form.custom_network_snapshot.data.strip()
            else:
                raise werkzeug.exceptions.BadRequest(
                        'Unrecognized method: "%s"' % form.method.data)

            policy = {'policy': form.lr_policy.data}
            if form.lr_policy.data == 'fixed':
                pass
            elif form.lr_policy.data == 'step':
                policy['stepsize'] = form.lr_step_size.data
                policy['gamma'] = form.lr_step_gamma.data
            elif form.lr_policy.data == 'multistep':
                policy['stepvalue'] = form.lr_multistep_values.data
                policy['gamma'] = form.lr_multistep_gamma.data
            elif form.lr_policy.data == 'exp':
                policy['gamma'] = form.lr_exp_gamma.data
            elif form.lr_policy.data == 'inv':
                policy['gamma'] = form.lr_inv_gamma.data
                policy['power'] = form.lr_inv_power.data
            elif form.lr_policy.data == 'poly':
                policy['power'] = form.lr_poly_power.data
            elif form.lr_policy.data == 'sigmoid':
                policy['stepsize'] = form.lr_sigmoid_step.data
                policy['gamma'] = form.lr_sigmoid_gamma.data
            else:
                raise werkzeug.exceptions.BadRequest(
                        'Invalid learning rate policy')

            if config_value('caffe_root')['multi_gpu']:
                if form.select_gpu_count.data:
                    gpu_count = form.select_gpu_count.data
                    selected_gpus = None
                else:
                    selected_gpus = [str(gpu) for gpu in form.select_gpus.data]
                    gpu_count = None
            else:
                if form.select_gpu.data == 'next':
                    gpu_count = 1
                    selected_gpus = None
                else:
                    selected_gpus = [str(form.select_gpu.data)]
                    gpu_count = None

            # Python Layer File may be on the server or copied from the client.
            fs.copy_python_layer_file(
                bool(form.python_layer_from_client.data),
                job.dir(),
                (flask.request.files[form.python_layer_client_file.name]
                 if form.python_layer_client_file.name in flask.request.files
                 else ''), form.python_layer_server_file.data)

            job.tasks.append(fw.create_train_task(
                        job = job,
                        dataset = datasetJob,
                        train_epochs = form.train_epochs.data,
                        snapshot_interval = form.snapshot_interval.data,
                        learning_rate = form.learning_rate.data[0],
                        lr_policy = policy,
                        gpu_count = gpu_count,
                        selected_gpus = selected_gpus,
                        batch_size = form.batch_size.data[0],
                        batch_accumulation = form.batch_accumulation.data,
                        val_interval = form.val_interval.data,
                        pretrained_model = pretrained_model,
                        crop_size = form.crop_size.data,
                        use_mean = form.use_mean.data,
                        network = network,
                        random_seed = form.random_seed.data,
                        solver_type = form.solver_type.data,
                        shuffle = form.shuffle.data,
                        )
                    )

            ## Save form data with the job so we can easily clone it later.
            save_form_to_job(job, form)

            jobs.append(job)
            scheduler.add_job(job)
            if n_jobs == 1:
                if request_wants_json():
                    return flask.jsonify(job.json_dict())
                else:
                    return flask.redirect(flask.url_for('digits.model.views.show', job_id=job.id()))

        except:
            if job:
                scheduler.delete_job(job)
            raise

    if request_wants_json():
        return flask.jsonify(jobs=[job.json_dict() for job in jobs])

    # If there are multiple jobs launched, go to the home page.
    return flask.redirect('/')