コード例 #1
0
 def fdiff(self, argindex=4):
     from diofant import Sum
     if argindex == 1:
         # Diff wrt n
         raise ArgumentIndexError(self, argindex)
     elif argindex == 2:
         # Diff wrt a
         n, a, b, x = self.args
         k = Dummy("k")
         f1 = 1 / (a + b + n + k + 1)
         f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) /
               ((n - k) * RisingFactorial(a + b + k + 1, n - k)))
         return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1))
     elif argindex == 3:
         # Diff wrt b
         n, a, b, x = self.args
         k = Dummy("k")
         f1 = 1 / (a + b + n + k + 1)
         f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) /
               ((n - k) * RisingFactorial(a + b + k + 1, n - k)))
         return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1))
     elif argindex == 4:
         # Diff wrt x
         n, a, b, x = self.args
         return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x)
     else:
         raise ArgumentIndexError(self, argindex)
コード例 #2
0
    def __contains__(self, o):
        if isinstance(o, Point):
            x = Dummy('x', extended_real=True)
            y = Dummy('y', extended_real=True)

            res = self.equation(x, y).subs({x: o.x, y: o.y})
            return trigsimp(simplify(res)) is S.Zero
        elif isinstance(o, Ellipse):
            return self == o
        return False
コード例 #3
0
    def _do_ellipse_intersection(self, o):
        """The intersection of an ellipse with another ellipse or a circle.

        Private helper method for `intersection`.

        """

        x = Dummy('x', extended_real=True)
        y = Dummy('y', extended_real=True)
        seq = self.equation(x, y)
        oeq = o.equation(x, y)
        result = solve([seq, oeq], [x, y])
        return [Point(*r) for r in list(uniq(result))]
コード例 #4
0
def test_core_symbol():
    # make the Symbol a unique name that doesn't class with any other
    # testing variable in this file since after this test the symbol
    # having the same name will be cached as noncommutative
    for c in (Dummy, Dummy("x", commutative=False), Symbol,
              Symbol("_sympyissue_6229", commutative=False), Wild, Wild("x")):
        check(c)
コード例 #5
0
def _sqrt_symbolic_denest(a, b, r):
    """Given an expression, sqrt(a + b*sqrt(b)), return the denested
    expression or None.

    Algorithm:
    If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
    (y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
    (cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
    sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).

    Examples
    ========

    >>> from diofant.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
    >>> from diofant import sqrt, Symbol
    >>> from diofant.abc import x

    >>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
    >>> _sqrt_symbolic_denest(a, b, r)
    sqrt(-2*sqrt(29) + 11) + sqrt(5)

    If the expression is numeric, it will be simplified:

    >>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
    >>> sqrtdenest(sqrt((w**2).expand()))
    1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))

    Otherwise, it will only be simplified if assumptions allow:

    >>> w = w.subs(sqrt(3), sqrt(x + 3))
    >>> sqrtdenest(sqrt((w**2).expand()))
    sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)

    Notice that the argument of the sqrt is a square. If x is made positive
    then the sqrt of the square is resolved:

    >>> _.subs(x, Symbol('x', positive=True))
    sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
    """

    a, b, r = map(sympify, (a, b, r))
    rval = _sqrt_match(r)
    if not rval:
        return
    ra, rb, rr = rval
    if rb:
        y = Dummy('y', positive=True)
        try:
            newa = Poly(a.subs(sqrt(rr), (y**2 - ra) / rb), y)
        except PolynomialError:
            return
        if newa.degree() == 2:
            ca, cb, cc = newa.all_coeffs()
            cb += b
            if _mexpand(cb**2 - 4 * ca * cc).equals(0):
                z = sqrt(ca * (sqrt(r) + cb / (2 * ca))**2)
                if z.is_number:
                    z = _mexpand(Mul._from_args(z.as_content_primitive()))
                return z
コード例 #6
0
 def _eval_rewrite_as_Sum(self, ap, bq, z):
     from diofant.functions import factorial, RisingFactorial, Piecewise
     from diofant import Sum
     n = Dummy("n", integer=True)
     rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
     rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
     coeff = Mul(*rfap) / Mul(*rfbq)
     return Piecewise((Sum(coeff * z**n / factorial(n),
                           (n, 0, oo)), self.convergence_statement),
                      (self, True))
コード例 #7
0
def _eval_sum_hyper(f, i, a):
    """ Returns (res, cond). Sums from a to oo. """
    from diofant.functions import hyper
    from diofant.simplify import hyperexpand, hypersimp, fraction, simplify
    from diofant.polys.polytools import Poly, factor

    if a != 0:
        return _eval_sum_hyper(f.subs(i, i + a), i, 0)

    if f.subs(i, 0) == 0:
        if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
            return Integer(0), True
        return _eval_sum_hyper(f.subs(i, i + 1), i, 0)

    hs = hypersimp(f, i)
    if hs is None:
        return

    numer, denom = fraction(factor(hs))
    top, topl = numer.as_coeff_mul(i)
    bot, botl = denom.as_coeff_mul(i)
    ab = [top, bot]
    factors = [topl, botl]
    params = [[], []]
    for k in range(2):
        for fac in factors[k]:
            mul = 1
            if fac.is_Pow:
                mul = fac.exp
                fac = fac.base
                if not mul.is_Integer:
                    return
            p = Poly(fac, i)
            if p.degree() != 1:
                return
            m, n = p.all_coeffs()
            ab[k] *= m**mul
            params[k] += [n / m] * mul

    # Add "1" to numerator parameters, to account for implicit n! in
    # hypergeometric series.
    ap = params[0] + [1]
    bq = params[1]
    x = ab[0] / ab[1]
    h = hyper(ap, bq, x)

    e = h
    try:
        e = hyperexpand(h)
    except PolynomialError:
        pass
    if e is S.NaN and h.convergence_statement:
        e = h

    return f.subs(i, 0) * e, h.convergence_statement
コード例 #8
0
 def _eval_is_real(self):
     for l in self.limits:
         if len(l) != 3:
             return
         if not l[1].is_real or not l[2].is_real:
             return
     f = self.function.subs(
         {v: Dummy("d", real=True)
          for v in self.variables})
     if f.is_real:
         return True
コード例 #9
0
def _symbols(name, n):
    """get vector of symbols local to this module"""
    try:
        lsyms = _symbols_cache[name]
    except KeyError:
        lsyms = []
        _symbols_cache[name] = lsyms

    while len(lsyms) < n:
        lsyms.append(Dummy('%s%i' % (name, len(lsyms))))

    return lsyms[:n]
コード例 #10
0
def eval_sum_hyper(f, i_a_b):
    from diofant.logic.boolalg import And

    i, a, b = i_a_b

    if (b - a).is_Integer:
        # We are never going to do better than doing the sum in the obvious way
        return

    old_sum = Sum(f, (i, a, b))

    if b != S.Infinity:
        if a == S.NegativeInfinity:
            res = _eval_sum_hyper(f.subs(i, -i), i, -b)
            if res is not None:
                return Piecewise(res, (old_sum, True))
        else:
            res1 = _eval_sum_hyper(f, i, a)
            res2 = _eval_sum_hyper(f, i, b + 1)
            if res1 is None or res2 is None:
                return
            (res1, cond1), (res2, cond2) = res1, res2
            cond = And(cond1, cond2)
            if cond == S.false:
                return
            return Piecewise((res1 - res2, cond), (old_sum, True))

    if a == S.NegativeInfinity:
        res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
        res2 = _eval_sum_hyper(f, i, 0)
        if res1 is None or res2 is None:
            return
        res1, cond1 = res1
        res2, cond2 = res2
        cond = And(cond1, cond2)
        if cond == S.false:
            return
        return Piecewise((res1 + res2, cond), (old_sum, True))

    # Now b == oo, a != -oo
    res = _eval_sum_hyper(f, i, a)
    if res is not None:
        r, c = res
        if c == S.false:
            if r.is_number:
                f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
                if f.is_positive or f.is_zero:
                    return S.Infinity
                elif f.is_negative:
                    return S.NegativeInfinity
            return
        return Piecewise(res, (old_sum, True))
コード例 #11
0
 def fdiff(self, argindex=3):
     from diofant import Sum
     if argindex == 2:
         # Diff wrt alpha
         n, alpha, x = self.args
         k = Dummy("k")
         return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1))
     elif argindex == 3:
         # Diff wrt x
         n, alpha, x = self.args
         return -assoc_laguerre(n - 1, alpha + 1, x)
     else:  # wrt n
         raise ArgumentIndexError(self, argindex)
コード例 #12
0
def weak_normalizer(a, d, DE, z=None):
    """
    Weak normalization.

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    """
    z = z or Dummy('z')
    dn, ds = splitfactor(d, DE)

    # Compute d1, where dn == d1*d2**2*...*dn**n is a square-free
    # factorization of d.
    g = gcd(dn, dn.diff(DE.t))
    d_sqf_part = dn.quo(g)
    d1 = d_sqf_part.quo(gcd(d_sqf_part, g))

    a1, b = gcdex_diophantine(
        d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t), a.as_poly(DE.t))
    r = (a - Poly(z, DE.t) * derivation(d1, DE)).as_poly(DE.t).resultant(
        d1.as_poly(DE.t))
    r = Poly(r, z)

    if not r.has(z):
        return Poly(1, DE.t), (a, d)

    N = [i for i in r.real_roots() if i in ZZ and i > 0]

    q = reduce(mul,
               [gcd(a - Poly(n, DE.t) * derivation(d1, DE), d1) for n in N],
               Poly(1, DE.t))

    dq = derivation(q, DE)
    sn = q * a - d * dq
    sd = q * d
    sn, sd = sn.cancel(sd, include=True)

    return q, (sn, sd)
コード例 #13
0
def telescopic(L, R, limits):
    '''Tries to perform the summation using the telescopic property

    return None if not possible
    '''
    (i, a, b) = limits
    if L.is_Add or R.is_Add:
        return

    # We want to solve(L.subs(i, i + m) + R, m)
    # First we try a simple match since this does things that
    # solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails

    k = Wild("k")
    sol = (-R).match(L.subs(i, i + k))
    s = None
    if sol and k in sol:
        s = sol[k]
        if not (s.is_Integer and L.subs(i, i + s) == -R):
            # sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
            s = None

    # But there are things that match doesn't do that solve
    # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1

    if s is None:
        m = Dummy('m')
        try:
            sol = solve(L.subs(i, i + m) + R, m) or []
        except NotImplementedError:
            return
        sol = [
            si for si in sol
            if si.is_Integer and (L.subs(i, i + si) + R).expand().is_zero
        ]
        if len(sol) != 1:
            return
        s = sol[0]

    if s < 0:
        return telescopic_direct(R, L, abs(s), (i, a, b))
    elif s > 0:
        return telescopic_direct(L, R, s, (i, a, b))
コード例 #14
0
    def _entry(self, i, j, expand=True):
        coeff, matrices = self.as_coeff_matrices()

        if len(matrices) == 1:  # situation like 2*X, matmul is just X
            return coeff * matrices[0][i, j]

        head, tail = matrices[0], matrices[1:]
        if len(tail) == 0:
            raise ValueError("lenth of tail cannot be 0")
        X = head
        Y = MatMul(*tail)

        from diofant.core.symbol import Dummy
        from diofant.concrete.summations import Sum
        from diofant.matrices import ImmutableMatrix
        k = Dummy('k', integer=True)
        if X.has(ImmutableMatrix) or Y.has(ImmutableMatrix):
            return coeff * Add(*[X[i, k] * Y[k, j] for k in range(X.cols)])
        result = Sum(coeff * X[i, k] * Y[k, j], (k, 0, X.cols - 1))
        return result.doit() if expand else result
コード例 #15
0
    def circumference(self):
        """The circumference of the ellipse.

        Examples
        ========

        >>> from diofant import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.circumference
        12*Integral(sqrt((-8*_x**2/9 + 1)/(-_x**2 + 1)), (_x, 0, 1))

        """
        from diofant import Integral
        if self.eccentricity == 1:
            return 2 * pi * self.hradius
        else:
            x = Dummy('x', extended_real=True)
            return 4 * self.major * Integral(
                sqrt((1 - (self.eccentricity * x)**2) / (1 - x**2)), (x, 0, 1))
コード例 #16
0
 def fdiff(self, argindex=3):
     from diofant import Sum
     if argindex == 1:
         # Diff wrt n
         raise ArgumentIndexError(self, argindex)
     elif argindex == 2:
         # Diff wrt a
         n, a, x = self.args
         k = Dummy("k")
         factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k +
                        n + 2*a) * (n - k))
         factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \
             2 / (k + n + 2*a)
         kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x)
         return Sum(kern, (k, 0, n - 1))
     elif argindex == 3:
         # Diff wrt x
         n, a, x = self.args
         return 2*a*gegenbauer(n - 1, a + 1, x)
     else:
         raise ArgumentIndexError(self, argindex)
コード例 #17
0
def rsolve_ratio(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek
    for all rational solutions over field `K` of characteristic zero.

    This procedure accepts only polynomials, however if you are
    interested in solving recurrence with rational coefficients
    then use ``rsolve`` which will pre-process the given equation
    and run this procedure with polynomial arguments.

    The algorithm performs two basic steps:

        (1) Compute polynomial `v(n)` which can be used as universal
            denominator of any rational solution of equation
            `\operatorname{L} y = f`.

        (2) Construct new linear difference equation by substitution
            `y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its
            polynomial solutions. Return ``None`` if none were found.

    Algorithm implemented here is a revised version of the original
    Abramov's algorithm, developed in 1989. The new approach is much
    simpler to implement and has better overall efficiency. This
    method can be easily adapted to q-difference equations case.

    Besides finding rational solutions alone, this functions is
    an important part of Hyper algorithm were it is used to find
    particular solution of inhomogeneous part of a recurrence.

    Examples
    ========

    >>> from diofant.abc import x
    >>> from diofant.solvers.recurr import rsolve_ratio
    >>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x,
    ... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x)
    C2*(2*x - 3)/(2*(x**2 - 1))

    References
    ==========

    .. [1] S. A. Abramov, Rational solutions of linear difference
           and q-difference equations with polynomial coefficients,
           in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York,
           1995, 285-289

    See Also
    ========

    rsolve_hyper
    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return

    coeffs = list(map(sympify, coeffs))

    r = len(coeffs) - 1

    A, B = coeffs[r], coeffs[0]
    A = A.subs(n, n - r).expand()

    h = Dummy('h')

    res = resultant(A, B.subs(n, n + h), n)

    if not res.is_polynomial(h):
        p, q = res.as_numer_denom()
        res = quo(p, q, h)

    nni_roots = list(
        roots(res, h, filter='Z', predicate=lambda r: r >= 0).keys())

    if not nni_roots:
        return rsolve_poly(coeffs, f, n, **hints)
    else:
        C, numers = S.One, [S.Zero] * (r + 1)

        for i in range(int(max(nni_roots)), -1, -1):
            d = gcd(A, B.subs(n, n + i), n)

            A = quo(A, d, n)
            B = quo(B, d.subs(n, n - i), n)

            C *= Mul(*[d.subs(n, n - j) for j in range(0, i + 1)])

        denoms = [C.subs(n, n + i) for i in range(0, r + 1)]

        for i in range(0, r + 1):
            g = gcd(coeffs[i], denoms[i], n)

            numers[i] = quo(coeffs[i], g, n)
            denoms[i] = quo(denoms[i], g, n)

        for i in range(0, r + 1):
            numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:]))

        result = rsolve_poly(numers, f * Mul(*denoms), n, **hints)

        if result is not None:
            if hints.get('symbols', False):
                return simplify(result[0] / C), result[1]
            else:
                return simplify(result / C)
        else:
            return
コード例 #18
0
def rsolve_hyper(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f` we seek for all hypergeometric solutions
    over field `K` of characteristic zero.

    The inhomogeneous part can be either hypergeometric or a sum
    of a fixed number of pairwise dissimilar hypergeometric terms.

    The algorithm performs three basic steps:

        (1) Group together similar hypergeometric terms in the
            inhomogeneous part of `\operatorname{L} y = f`, and find
            particular solution using Abramov's algorithm.

        (2) Compute generating set of `\operatorname{L}` and find basis
            in it, so that all solutions are linearly independent.

        (3) Form final solution with the number of arbitrary
            constants equal to dimension of basis of `\operatorname{L}`.

    Term `a(n)` is hypergeometric if it is annihilated by first order
    linear difference equations with polynomial coefficients or, in
    simpler words, if consecutive term ratio is a rational function.

    The output of this procedure is a linear combination of fixed
    number of hypergeometric terms. However the underlying method
    can generate larger class of solutions - D'Alembertian terms.

    Note also that this method not only computes the kernel of the
    inhomogeneous equation, but also reduces in to a basis so that
    solutions generated by this procedure are linearly independent

    Examples
    ========

    >>> from diofant.solvers import rsolve_hyper
    >>> from diofant.abc import x

    >>> rsolve_hyper([-1, -1, 1], 0, x)
    C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x

    >>> rsolve_hyper([-1, 1], 1 + x, x)
    C0 + x*(x + 1)/2

    References
    ==========

    .. [1] M. Petkovšek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [2] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996.
    """
    coeffs = list(map(sympify, coeffs))

    f = sympify(f)

    r, kernel, symbols = len(coeffs) - 1, [], set()

    if not f.is_zero:
        if f.is_Add:
            similar = {}

            for g in f.expand().args:
                if not g.is_hypergeometric(n):
                    return

                for h in similar.keys():
                    if hypersimilar(g, h, n):
                        similar[h] += g
                        break
                else:
                    similar[g] = S.Zero

            inhomogeneous = []

            for g, h in similar.items():
                inhomogeneous.append(g + h)
        elif f.is_hypergeometric(n):
            inhomogeneous = [f]
        else:
            return

        for i, g in enumerate(inhomogeneous):
            coeff, polys = S.One, coeffs[:]
            denoms = [S.One] * (r + 1)

            s = hypersimp(g, n)

            for j in range(1, r + 1):
                coeff *= s.subs(n, n + j - 1)

                p, q = coeff.as_numer_denom()

                polys[j] *= p
                denoms[j] = q

            for j in range(0, r + 1):
                polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))

            R = rsolve_ratio(polys, Mul(*denoms), n, symbols=True)
            if R is not None:
                R, syms = R
                if syms:
                    R = R.subs(zip(syms, [0] * len(syms)))

            if R:
                inhomogeneous[i] *= R
            else:
                return

            result = Add(*inhomogeneous)
            result = simplify(result)
    else:
        result = S.Zero

    Z = Dummy('Z')

    p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)

    p_factors = [z for z in roots(p, n).keys()]
    q_factors = [z for z in roots(q, n).keys()]

    factors = [(S.One, S.One)]

    for p in p_factors:
        for q in q_factors:
            if p.is_integer and q.is_integer and p <= q:
                continue
            else:
                factors += [(n - p, n - q)]

    p = [(n - p, S.One) for p in p_factors]
    q = [(S.One, n - q) for q in q_factors]

    factors = p + factors + q

    for A, B in factors:
        polys, degrees = [], []
        D = A * B.subs(n, n + r - 1)

        for i in range(0, r + 1):
            a = Mul(*[A.subs(n, n + j) for j in range(0, i)])
            b = Mul(*[B.subs(n, n + j) for j in range(i, r)])

            poly = quo(coeffs[i] * a * b, D, n)
            polys.append(poly.as_poly(n))

            if not poly.is_zero:
                degrees.append(polys[i].degree())

        d, poly = max(degrees), S.Zero

        for i in range(0, r + 1):
            coeff = polys[i].nth(d)

            if coeff is not S.Zero:
                poly += coeff * Z**i

        for z in roots(poly, Z).keys():
            if z.is_zero:
                continue

            (C, s) = rsolve_poly([polys[i] * z**i for i in range(r + 1)],
                                 0,
                                 n,
                                 symbols=True)

            if C is not None and C is not S.Zero:
                symbols |= set(s)

                ratio = z * A * C.subs(n, n + 1) / B / C
                ratio = simplify(ratio)

                skip = max([-1] + [
                    v for v in roots(Mul(*ratio.as_numer_denom()), n).keys()
                    if v.is_Integer
                ]) + 1
                K = product(ratio, (n, skip, n - 1))

                if K.has(factorial, FallingFactorial, RisingFactorial):
                    K = simplify(K)

                if casoratian(kernel + [K], n, zero=False) != 0:
                    kernel.append(K)

    kernel.sort(key=default_sort_key)
    sk = list(zip(numbered_symbols('C'), kernel))

    for C, ker in sk:
        result += C * ker

    if hints.get('symbols', False):
        symbols |= {s for s, k in sk}
        return result, list(symbols)
    else:
        return result
コード例 #19
0
def test_print_Dummy():
    d = Dummy('d')
    p = setup_test_printer()
    assert p._print_Dummy(d) == "d_%i" % d.dummy_index
コード例 #20
0
    def doit(self, **hints):
        """Evaluates limit.

        Notes
        =====

        First we handle some trivial cases (i.e. constant), then try
        Gruntz algorithm (see the :py:mod:`~diofant.series.gruntz` module).
        """
        e, z, z0, dir = self.args

        if hints.get('deep', True):
            e = e.doit(**hints)
            z = z.doit(**hints)
            z0 = z0.doit(**hints)

        if str(dir) == 'real':
            right = limit(e, z, z0, "+")
            left = limit(e, z, z0, "-")
            if not (left - right).equals(0):
                raise PoleError("left and right limits for expression %s at "
                                "point %s=%s seems to be not equal" %
                                (e, z, z0))
            else:
                return right

        use_heuristics = hints.get('heuristics', True)

        has_Floats = e.has(Float)
        if has_Floats:
            e = e.subs({k: Rational(k)
                        for k in e.atoms(Float)},
                       simultaneous=True)

        if z0.has(z):
            newz = z.as_dummy()
            r = limit(e.subs(z, newz), newz, z0, dir)
            if r.func is Limit:
                r = r.subs(newz, z)
            return r

        if e == z:
            return z0

        if not e.has(z):
            return e

        if z0 is S.NaN:
            return S.NaN

        if e.has(Order):
            e = e.expand()
            order = e.getO()
            if order:
                if (z, z0) in zip(order.variables, order.point):
                    order = limit(order.expr, z, z0, dir)
                    e = e.removeO() + order

        try:
            # Convert to the limit z->oo and use Gruntz algorithm.
            newe, newz = e, z
            if z0 == S.NegativeInfinity:
                newe = e.subs(z, -z)
            elif z0 != S.Infinity:
                if str(dir) == "+":
                    newe = e.subs(z, z0 + 1 / z)
                else:
                    newe = e.subs(z, z0 - 1 / z)

            if not z.is_positive or not z.is_finite:
                # We need a fresh variable here to simplify expression further.
                newz = Dummy(z.name, positive=True, finite=True)
                newe = newe.subs(z, newz)

            r = limitinf(newe, newz)
        except (PoleError, ValueError, NotImplementedError):
            r = None
            if use_heuristics:
                r = heuristics(e, z, z0, dir)
            if r is None:
                return self

        if has_Floats:
            r = r.evalf()

        return r
コード例 #21
0
def ufuncify(args,
             expr,
             language=None,
             backend='numpy',
             tempdir=None,
             flags=None,
             verbose=False,
             helpers=None):
    """
    Generates a binary function that supports broadcasting on numpy arrays.

    Parameters
    ----------

    args : iterable
        Either a Symbol or an iterable of symbols. Specifies the argument
        sequence for the function.
    expr
        A Diofant expression that defines the element wise operation.
    language : string, optional
        If supplied, (options: 'C' or 'F95'), specifies the language of the
        generated code. If ``None`` [default], the language is inferred based
        upon the specified backend.
    backend : string, optional
        Backend used to wrap the generated code. Either 'numpy' [default],
        'cython', or 'f2py'.
    tempdir : string, optional
        Path to directory for temporary files. If this argument is supplied,
        the generated code and the wrapper input files are left intact in the
        specified path.
    flags : iterable, optional
        Additional option flags that will be passed to the backend
    verbose : bool, optional
        If True, autowrap will not mute the command line backends. This can be
        helpful for debugging.
    helpers : iterable, optional
        Used to define auxillary expressions needed for the main expr. If the
        main expression needs to call a specialized function it should be put
        in the ``helpers`` iterable. Autowrap will then make sure that the
        compiled main expression can link to the helper routine. Items should
        be tuples with (<funtion_name>, <diofant_expression>, <arguments>). It
        is mandatory to supply an argument sequence to helper routines.

    Notes
    -----

    The default backend ('numpy') will create actual instances of
    ``numpy.ufunc``. These support ndimensional broadcasting, and implicit type
    conversion. Use of the other backends will result in a "ufunc-like"
    function, which requires equal length 1-dimensional arrays for all
    arguments, and will not perform any type conversions.

    References
    ----------

    .. [1] http://docs.scipy.org/doc/numpy/reference/ufuncs.html

    Examples
    --------

    >>> from diofant.utilities.autowrap import ufuncify
    >>> from diofant.abc import x, y
    >>> import numpy as np
    >>> f = ufuncify((x, y), y + x**2)
    >>> type(f) is np.ufunc
    True
    >>> f([1, 2, 3], 2)
    array([ 3.,  6.,  11.])
    >>> f(np.arange(5), 3)
    array([ 3.,  4.,  7.,  12.,  19.])

    For the F2Py and Cython backends, inputs are required to be equal length
    1-dimensional arrays. The F2Py backend will perform type conversion, but
    the Cython backend will error if the inputs are not of the expected type.

    >>> f_fortran = ufuncify((x, y), y + x**2, backend='F2Py')
    >>> f_fortran(1, 2)
    3
    >>> f_fortran(numpy.array([1, 2, 3]), numpy.array([1.0, 2.0, 3.0]))
    array([2.,  6.,  12.])
    >>> f_cython = ufuncify((x, y), y + x**2, backend='Cython')
    >>> f_cython(1, 2)
    Traceback (most recent call last):
    ...
    TypeError: Argument '_x' has incorrect type (expected numpy.ndarray, got int)
    >>> f_cython(numpy.array([1.0]), numpy.array([2.0]))
    array([ 3.])
    """

    if isinstance(args, (Dummy, Symbol)):
        args = (args, )
    else:
        args = tuple(args)

    if language:
        _validate_backend_language(backend, language)
    else:
        language = _infer_language(backend)

    helpers = helpers if helpers else ()
    flags = flags if flags else ()

    if backend.upper() == 'NUMPY':
        routine = make_routine('autofunc', expr, args)
        helps = []
        for name, expr, args in helpers:
            helps.append(make_routine(name, expr, args))
        code_wrapper = UfuncifyCodeWrapper(CCodeGen("ufuncify"), tempdir,
                                           flags, verbose)
        return code_wrapper.wrap_code(routine, helpers=helps)
    else:
        # Dummies are used for all added expressions to prevent name clashes
        # within the original expression.
        y = IndexedBase(Dummy())
        m = Dummy(integer=True)
        i = Idx(Dummy(integer=True), m)
        f = implemented_function(Dummy().name, Lambda(args, expr))
        # For each of the args create an indexed version.
        indexed_args = [IndexedBase(Dummy(str(a))) for a in args]
        # Order the arguments (out, args, dim)
        args = [y] + indexed_args + [m]
        args_with_indices = [a[i] for a in indexed_args]
        return autowrap(Eq(y[i], f(*args_with_indices)), language, backend,
                        tempdir, tuple(args), flags, verbose, helpers)
コード例 #22
0
    def normal_lines(self, p, prec=None):
        """Normal lines between `p` and the ellipse.

        Parameters
        ==========

        p : Point

        Returns
        =======

        normal_lines : list with 1, 2 or 4 Lines

        Examples
        ========

        >>> from diofant import Line, Point, Ellipse
        >>> e = Ellipse((0, 0), 2, 3)
        >>> c = e.center
        >>> e.normal_lines(c + Point(1, 0))
        [Line(Point2D(0, 0), Point2D(1, 0))]
        >>> e.normal_lines(c)
        [Line(Point2D(0, 0), Point2D(0, 1)), Line(Point2D(0, 0), Point2D(1, 0))]

        Off-axis points require the solution of a quartic equation. This
        often leads to very large expressions that may be of little practical
        use. An approximate solution of `prec` digits can be obtained by
        passing in the desired value:

        >>> e.normal_lines((3, 3), prec=2)
        [Line(Point2D(-38/47, -85/31), Point2D(9/47, -21/17)),
        Line(Point2D(19/13, -43/21), Point2D(32/13, -8/3))]

        Whereas the above solution has an operation count of 12, the exact
        solution has an operation count of 2020.
        """
        p = Point(p)

        # XXX change True to something like self.angle == 0 if the arbitrarily
        # rotated ellipse is introduced.
        # https://github.com/sympy/sympy/issues/2815)
        if True:
            rv = []
            if p.x == self.center.x:
                rv.append(Line(self.center, slope=oo))
            if p.y == self.center.y:
                rv.append(Line(self.center, slope=0))
            if rv:
                # at these special orientations of p either 1 or 2 normals
                # exist and we are done
                return rv

        # find the 4 normal points and construct lines through them with
        # the corresponding slope
        x, y = Dummy('x', extended_real=True), Dummy('y', extended_real=True)
        eq = self.equation(x, y)
        dydx = idiff(eq, y, x)
        norm = -1 / dydx
        slope = Line(p, (x, y)).slope
        seq = slope - norm
        yis = solve(seq, y)[0]
        xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
        if len(xeq.free_symbols) == 1:
            try:
                # this is so much faster, it's worth a try
                xsol = Poly(xeq, x).real_roots()
            except (DomainError, PolynomialError, NotImplementedError):
                xsol = _nsort(solve(xeq, x), separated=True)[0]
            points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
        else:
            raise NotImplementedError(
                'intersections for the general ellipse are not supported')
        slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
        if prec is not None:
            points = [pt.n(prec) for pt in points]
            slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
        return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
コード例 #23
0
    def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
        """
        Return an Euler-Maclaurin approximation of self, where m is the
        number of leading terms to sum directly and n is the number of
        terms in the tail.

        With m = n = 0, this is simply the corresponding integral
        plus a first-order endpoint correction.

        Returns (s, e) where s is the Euler-Maclaurin approximation
        and e is the estimated error (taken to be the magnitude of
        the first omitted term in the tail):

            >>> from diofant.abc import k, a, b

            >>> Sum(1/k, (k, 2, 5)).doit().evalf()
            1.28333333333333
            >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
            >>> s
            -log(2) + 7/20 + log(5)
            >>> from diofant import sstr
            >>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
            (1.26629073187415, 0.0175000000000000)

        The endpoints may be symbolic:

            >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
            >>> s
            -log(a) + log(b) + 1/(2*b) + 1/(2*a)
            >>> e
            Abs(1/(12*b**2) - 1/(12*a**2))

        If the function is a polynomial of degree at most 2n+1, the
        Euler-Maclaurin formula becomes exact (and e = 0 is returned):

            >>> Sum(k, (k, 2, b)).euler_maclaurin()
            (b**2/2 + b/2 - 1, 0)
            >>> Sum(k, (k, 2, b)).doit()
            b**2/2 + b/2 - 1

        With a nonzero eps specified, the summation is ended
        as soon as the remainder term is less than the epsilon.
        """
        from diofant.functions import bernoulli, factorial
        from diofant.integrals import Integral

        m = int(m)
        n = int(n)
        f = self.function
        if len(self.limits) != 1:
            raise ValueError("More than 1 limit")
        i, a, b = self.limits[0]
        if (a > b) is S.true:
            if a - b == 1:
                return S.Zero, S.Zero
            a, b = b + 1, a - 1
            f = -f
        s = S.Zero
        if m:
            if b.is_Integer and a.is_Integer:
                m = min(m, b - a + 1)
            if not eps or f.is_polynomial(i):
                for k in range(m):
                    s += f.subs(i, a + k)
            else:
                term = f.subs(i, a)
                if term:
                    test = abs(term.evalf(3)) < eps
                    if test == S.true:
                        return s, abs(term)
                    elif not (test == S.false):
                        # a symbolic Relational class, can't go further
                        return term, S.Zero
                s += term
                for k in range(1, m):
                    term = f.subs(i, a + k)
                    if abs(term.evalf(3)) < eps and term != 0:
                        return s, abs(term)
                    s += term
            if b - a + 1 == m:
                return s, S.Zero
            a += m
        x = Dummy('x')
        I = Integral(f.subs(i, x), (x, a, b))
        if eval_integral:
            I = I.doit()
        s += I

        def fpoint(expr):
            if b is S.Infinity:
                return expr.subs(i, a), 0
            return expr.subs(i, a), expr.subs(i, b)

        fa, fb = fpoint(f)
        iterm = (fa + fb) / 2
        g = f.diff(i)
        for k in range(1, n + 2):
            ga, gb = fpoint(g)
            term = bernoulli(2 * k) / factorial(2 * k) * (gb - ga)
            if (eps and term and abs(term.evalf(3)) < eps) or (k > n):
                break
            s += term
            g = g.diff(i, 2, simplify=False)
        return s + iterm, abs(term)
コード例 #24
0
def rsolve_poly(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order
    `k` with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek for
    all polynomial solutions over field `K` of characteristic zero.

    The algorithm performs two basic steps:

        (1) Compute degree `N` of the general polynomial solution.
        (2) Find all polynomials of degree `N` or less
            of `\operatorname{L} y = f`.

    There are two methods for computing the polynomial solutions.
    If the degree bound is relatively small, i.e. it's smaller than
    or equal to the order of the recurrence, then naive method of
    undetermined coefficients is being used. This gives system
    of algebraic equations with `N+1` unknowns.

    In the other case, the algorithm performs transformation of the
    initial equation to an equivalent one, for which the system of
    algebraic equations has only `r` indeterminates. This method is
    quite sophisticated (in comparison with the naive one) and was
    invented together by Abramov, Bronstein and Petkovšek.

    It is possible to generalize the algorithm implemented here to
    the case of linear q-difference and differential equations.

    Lets say that we would like to compute `m`-th Bernoulli polynomial
    up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}`
    recurrence, which has solution `b(n) = B_m + C`. For example:

    >>> from diofant import Symbol, rsolve_poly
    >>> n = Symbol('n', integer=True)

    >>> rsolve_poly([-1, 1], 4*n**3, n)
    C0 + n**4 - 2*n**3 + n**2

    References
    ==========

    .. [1] S. A. Abramov, M. Bronstein and M. Petkovšek, On polynomial
           solutions of linear operator equations, in: T. Levelt, ed.,
           Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.

    .. [2] M. Petkovšek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [3] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B, 1996.

    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return

    homogeneous = f.is_zero

    r = len(coeffs) - 1

    coeffs = [Poly(coeff, n) for coeff in coeffs]

    g = gcd_list(coeffs + [f], n, polys=True)
    if not g.is_ground:
        coeffs = [quo(c, g, n, polys=False) for c in coeffs]
        f = quo(f, g, n, polys=False)

    polys = [Poly(0, n)] * (r + 1)
    terms = [(S.Zero, S.NegativeInfinity)] * (r + 1)

    for i in range(0, r + 1):
        for j in range(i, r + 1):
            polys[i] += coeffs[j] * binomial(j, i)

        if not polys[i].is_zero:
            (exp, ), coeff = polys[i].LT()
            terms[i] = (coeff, exp)

    d = b = terms[0][1]

    for i in range(1, r + 1):
        if terms[i][1] > d:
            d = terms[i][1]

        if terms[i][1] - i > b:
            b = terms[i][1] - i

    d, b = int(d), int(b)

    x = Dummy('x')

    degree_poly = S.Zero

    for i in range(0, r + 1):
        if terms[i][1] - i == b:
            degree_poly += terms[i][0] * FallingFactorial(x, i)

    nni_roots = list(
        roots(degree_poly, x, filter='Z', predicate=lambda r: r >= 0).keys())

    if nni_roots:
        N = [max(nni_roots)]
    else:
        N = []

    if homogeneous:
        N += [-b - 1]
    else:
        N += [f.as_poly(n).degree() - b, -b - 1]

    N = int(max(N))

    if N < 0:
        if homogeneous:
            if hints.get('symbols', False):
                return S.Zero, []
            else:
                return S.Zero
        else:
            return

    if N <= r:
        C = []
        y = E = S.Zero

        for i in range(0, N + 1):
            C.append(Symbol('C' + str(i)))
            y += C[i] * n**i

        for i in range(0, r + 1):
            E += coeffs[i].as_expr() * y.subs(n, n + i)

        solutions = solve_undetermined_coeffs(E - f, C, n)

        if solutions is not None:
            C = [c for c in C if (c not in solutions)]
            result = y.subs(solutions)
        else:
            return  # TBD
    else:
        A = r
        U = N + A + b + 1

        nni_roots = list(
            roots(polys[r], filter='Z', predicate=lambda r: r >= 0).keys())

        if nni_roots != []:
            a = max(nni_roots) + 1
        else:
            a = S.Zero

        def _zero_vector(k):
            return [S.Zero] * k

        def _one_vector(k):
            return [S.One] * k

        def _delta(p, k):
            B = S.One
            D = p.subs(n, a + k)

            for i in range(1, k + 1):
                B *= -Rational(k - i + 1, i)
                D += B * p.subs(n, a + k - i)

            return D

        alpha = {}

        for i in range(-A, d + 1):
            I = _one_vector(d + 1)

            for k in range(1, d + 1):
                I[k] = I[k - 1] * (x + i - k + 1) / k

            alpha[i] = S.Zero

            for j in range(0, A + 1):
                for k in range(0, d + 1):
                    B = binomial(k, i + j)
                    D = _delta(polys[j].as_expr(), k)

                    alpha[i] += I[k] * B * D

        V = Matrix(U, A, lambda i, j: int(i == j))

        if homogeneous:
            for i in range(A, U):
                v = _zero_vector(A)

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom
        else:
            G = _zero_vector(U)

            for i in range(A, U):
                v = _zero_vector(A)
                g = S.Zero

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                    g += B * G[i - k]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom

                G[i] = (_delta(f, i - A) - g) / denom

        P, Q = _one_vector(U), _zero_vector(A)

        for i in range(1, U):
            P[i] = (P[i - 1] * (n - a - i + 1) / i).expand()

        for i in range(0, A):
            Q[i] = Add(*[(v * p).expand() for v, p in zip(V[:, i], P)])

        if not homogeneous:
            h = Add(*[(g * p).expand() for g, p in zip(G, P)])

        C = [Symbol('C' + str(i)) for i in range(0, A)]

        def g(i):
            return Add(*[c * _delta(q, i) for c, q in zip(C, Q)])

        if homogeneous:
            E = [g(i) for i in range(N + 1, U)]
        else:
            E = [g(i) + _delta(h, i) for i in range(N + 1, U)]

        if E != []:
            solutions = solve(E, *C)

            if not solutions:
                if homogeneous:
                    if hints.get('symbols', False):
                        return S.Zero, []
                    else:
                        return S.Zero
                else:
                    return
        else:
            solutions = {}

        if homogeneous:
            result = S.Zero
        else:
            result = h

        for c, q in list(zip(C, Q)):
            if c in solutions:
                s = solutions[c] * q
                C.remove(c)
            else:
                s = c * q

            result += s.expand()

    if hints.get('symbols', False):
        return result, C
    else:
        return result
コード例 #25
0
    def _eval_derivative(self, sym):
        """Evaluate the derivative of the current Integral object by
        differentiating under the integral sign [1], using the Fundamental
        Theorem of Calculus [2] when possible.

        Whenever an Integral is encountered that is equivalent to zero or
        has an integrand that is independent of the variable of integration
        those integrals are performed. All others are returned as Integral
        instances which can be resolved with doit() (provided they are integrable).

        References
        ==========

        .. [1] http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
        .. [2] http://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus

        Examples
        ========

        >>> from diofant import Integral
        >>> from diofant.abc import x, y
        >>> i = Integral(x + y, y, (y, 1, x))
        >>> i.diff(x)
        Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x))
        >>> i.doit().diff(x) == i.diff(x).doit()
        True
        >>> i.diff(y)
        0

        The previous must be true since there is no y in the evaluated integral:

        >>> i.free_symbols == {x}
        True
        >>> i.doit()
        2*x**3/3 - x/2 - 1/6

        """

        # differentiate under the integral sign; we do not
        # check for regularity conditions (TODO), see issue 4215

        # get limits and the function
        f, limits = self.function, list(self.limits)

        # the order matters if variables of integration appear in the limits
        # so work our way in from the outside to the inside.
        limit = limits.pop(-1)
        if len(limit) == 3:
            x, a, b = limit
        elif len(limit) == 2:
            x, b = limit
            a = None
        else:
            a = b = None
            x = limit[0]

        if limits:  # f is the argument to an integral
            f = self.func(f, *tuple(limits))

        # assemble the pieces
        def _do(f, ab):
            dab_dsym = diff(ab, sym)
            if not dab_dsym:
                return S.Zero
            if isinstance(f, Integral):
                limits = [(x, x) if (len(l) == 1 and l[0] == x) else l
                          for l in f.limits]
                f = self.func(f.function, *limits)
            return f.subs(x, ab) * dab_dsym

        rv = 0
        if b is not None:
            rv += _do(f, b)
        if a is not None:
            rv -= _do(f, a)
        if len(limit) == 1 and sym == x:
            # the dummy variable *is* also the real-world variable
            arg = f
            rv += arg
        else:
            # the dummy variable might match sym but it's
            # only a dummy and the actual variable is determined
            # by the limits, so mask off the variable of integration
            # while differentiating
            u = Dummy('u')
            arg = f.subs(x, u).diff(sym).subs(u, x)
            rv += self.func(arg, Tuple(x, a, b))
        return rv
コード例 #26
0
    def transform(self, x, u):
        r"""
        Performs a change of variables from `x` to `u` using the relationship
        given by `x` and `u` which will define the transformations `f` and `F`
        (which are inverses of each other) as follows:

        1) If `x` is a Symbol (which is a variable of integration) then `u`
           will be interpreted as some function, f(u), with inverse F(u).
           This, in effect, just makes the substitution of x with f(x).

        2) If `u` is a Symbol then `x` will be interpreted as some function,
           F(x), with inverse f(u). This is commonly referred to as
           u-substitution.

        Once f and F have been identified, the transformation is made as
        follows:

        .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x)
                  \frac{\mathrm{d}}{\mathrm{d}x}

        where `F(x)` is the inverse of `f(x)` and the limits and integrand have
        been corrected so as to retain the same value after integration.

        Notes
        =====

        The mappings, F(x) or f(u), must lead to a unique integral. Linear
        or rational linear expression, `2*x`, `1/x` and `sqrt(x)`, will
        always work; quadratic expressions like `x**2 - 1` are acceptable
        as long as the resulting integrand does not depend on the sign of
        the solutions (see examples).

        The integral will be returned unchanged if `x` is not a variable of
        integration.

        `x` must be (or contain) only one of of the integration variables. If
        `u` has more than one free symbol then it should be sent as a tuple
        (`u`, `uvar`) where `uvar` identifies which variable is replacing
        the integration variable.
        XXX can it contain another integration variable?

        Examples
        ========

        >>> from diofant.abc import a, b, c, d, x, u, y
        >>> from diofant import Integral, S, cos, sqrt

        >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1))

        transform can change the variable of integration

        >>> i.transform(x, u)
        Integral(u*cos(u**2 - 1), (u, 0, 1))

        transform can perform u-substitution as long as a unique
        integrand is obtained:

        >>> i.transform(x**2 - 1, u)
        Integral(cos(u)/2, (u, -1, 0))

        This attempt fails because x = +/-sqrt(u + 1) and the
        sign does not cancel out of the integrand:

        >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u)
        Traceback (most recent call last):
        ...
        ValueError:
        The mapping between F(x) and f(u) did not give a unique integrand.

        transform can do a substitution. Here, the previous
        result is transformed back into the original expression
        using "u-substitution":

        >>> ui = _
        >>> _.transform(sqrt(u + 1), x) == i
        True

        We can accomplish the same with a regular substitution:

        >>> ui.transform(u, x**2 - 1) == i
        True

        If the `x` does not contain a symbol of integration then
        the integral will be returned unchanged. Integral `i` does
        not have an integration variable `a` so no change is made:

        >>> i.transform(a, x) == i
        True

        When `u` has more than one free symbol the symbol that is
        replacing `x` must be identified by passing `u` as a tuple:

        >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u))
        Integral(a + u, (u, -a, -a + 1))
        >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a))
        Integral(a + u, (a, -u, -u + 1))

        See Also
        ========

        diofant.concrete.expr_with_limits.ExprWithLimits.variables : Lists the integration variables
        diofant.concrete.expr_with_limits.ExprWithLimits.as_dummy : Replace integration variables with dummy ones
        """

        from diofant.solvers.solvers import solve, posify
        d = Dummy('d')

        xfree = x.free_symbols.intersection(self.variables)
        if len(xfree) > 1:
            raise ValueError('F(x) can only contain one of: %s' %
                             self.variables)
        xvar = xfree.pop() if xfree else d

        if xvar not in self.variables:
            return self

        u = sympify(u)
        if isinstance(u, Expr):
            ufree = u.free_symbols
            if len(ufree) != 1:
                raise ValueError(
                    filldedent('''
                When f(u) has more than one free symbol, the one replacing x
                must be identified: pass f(u) as (f(u), u)'''))
            uvar = ufree.pop()
        else:
            u, uvar = u
            if uvar not in u.free_symbols:
                raise ValueError(
                    filldedent('''
                Expecting a tuple (expr, symbol) where symbol identified
                a free symbol in expr, but symbol is not in expr's free
                symbols.'''))
            if not isinstance(uvar, (Dummy, Symbol)):
                raise ValueError(
                    filldedent('''
                Expecting a tuple (expr, symbol) but didn't get
                a symbol; got %s''' % uvar))

        if x.is_Symbol and u.is_Symbol:
            return self.xreplace({x: u})

        if not x.is_Symbol and not u.is_Symbol:
            raise ValueError('either x or u must be a symbol')

        if uvar == xvar:
            return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar})

        if uvar in self.limits:
            raise ValueError(
                filldedent('''
            u must contain the same variable as in x
            or a variable that is not already an integration variable'''))

        if not x.is_Symbol:
            F = [x.subs(xvar, d)]
            soln = solve(u - x, xvar, check=False)
            if not soln:
                raise ValueError('no solution for solve(F(x) - f(u), x)')
            f = [fi.subs(uvar, d) for fi in soln]
        else:
            f = [u.subs(uvar, d)]
            pdiff, reps = posify(u - x)
            puvar = uvar.subs([(v, k) for k, v in reps.items()])
            soln = [s.subs(reps) for s in solve(pdiff, puvar)]
            if not soln:
                raise ValueError('no solution for solve(F(x) - f(u), u)')
            F = [fi.subs(xvar, d) for fi in soln]

        newfuncs = {(self.function.subs(xvar, fi) * fi.diff(d)).subs(d, uvar)
                    for fi in f}
        if len(newfuncs) > 1:
            raise ValueError(
                filldedent('''
            The mapping between F(x) and f(u) did not give
            a unique integrand.'''))
        newfunc = newfuncs.pop()

        def _calc_limit_1(F, a, b):
            """
            replace d with a, using subs if possible, otherwise limit
            where sign of b is considered
            """
            wok = F.subs(d, a)
            if wok is S.NaN or wok.is_finite is False and a.is_finite:
                return limit(sign(b) * F, d, a)
            return wok

        def _calc_limit(a, b):
            """
            replace d with a, using subs if possible, otherwise limit
            where sign of b is considered
            """
            avals = list({_calc_limit_1(Fi, a, b) for Fi in F})
            if len(avals) > 1:
                raise ValueError(
                    filldedent('''
                The mapping between F(x) and f(u) did not
                give a unique limit.'''))
            return avals[0]

        newlimits = []
        for xab in self.limits:
            sym = xab[0]
            if sym == xvar:
                if len(xab) == 3:
                    a, b = xab[1:]
                    a, b = _calc_limit(a, b), _calc_limit(b, a)
                    if a - b > 0:
                        a, b = b, a
                        newfunc = -newfunc
                    newlimits.append((uvar, a, b))
                elif len(xab) == 2:
                    a = _calc_limit(xab[1], 1)
                    newlimits.append((uvar, a))
                else:
                    newlimits.append(uvar)
            else:
                newlimits.append(xab)

        return self.func(newfunc, *newlimits)
コード例 #27
0
    def tangent_lines(self, p):
        """Tangent lines between `p` and the ellipse.

        If `p` is on the ellipse, returns the tangent line through point `p`.
        Otherwise, returns the tangent line(s) from `p` to the ellipse, or
        None if no tangent line is possible (e.g., `p` inside ellipse).

        Parameters
        ==========

        p : Point

        Returns
        =======

        tangent_lines : list with 1 or 2 Lines

        Raises
        ======

        NotImplementedError
            Can only find tangent lines for a point, `p`, on the ellipse.

        See Also
        ========

        diofant.geometry.point.Point, diofant.geometry.line.Line

        Examples
        ========

        >>> from diofant import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.tangent_lines(Point(3, 0))
        [Line(Point2D(3, 0), Point2D(3, -12))]
        """
        p = Point(p)
        if self.encloses_point(p):
            return []

        if p in self:
            delta = self.center - p
            rise = (self.vradius**2) * delta.x
            run = -(self.hradius**2) * delta.y
            p2 = Point(simplify(p.x + run), simplify(p.y + rise))
            return [Line(p, p2)]
        else:
            if len(self.foci) == 2:
                f1, f2 = self.foci
                maj = self.hradius
                test = (2 * maj - Point.distance(f1, p) -
                        Point.distance(f2, p))
            else:
                test = self.radius - Point.distance(self.center, p)
            if test.is_number and test.is_positive:
                return []
            # else p is outside the ellipse or we can't tell. In case of the
            # latter, the solutions returned will only be valid if
            # the point is not inside the ellipse; if it is, nan will result.
            x, y = Dummy('x'), Dummy('y')
            eq = self.equation(x, y)
            dydx = idiff(eq, y, x)
            slope = Line(p, Point(x, y)).slope
            tangent_points = solve([slope - dydx, eq], [x, y])

            # handle horizontal and vertical tangent lines
            if len(tangent_points) == 1:
                assert tangent_points[0][0] == p.x or tangent_points[0][
                    1] == p.y
                return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]

            # others
            return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
コード例 #28
0
def roots(f, *gens, **flags):
    """
    Computes symbolic roots of a univariate polynomial.

    Given a univariate polynomial f with symbolic coefficients (or
    a list of the polynomial's coefficients), returns a dictionary
    with its roots and their multiplicities.

    Only roots expressible via radicals will be returned.  To get
    a complete set of roots use RootOf class or numerical methods
    instead. By default cubic and quartic formulas are used in
    the algorithm. To disable them because of unreadable output
    set ``cubics=False`` or ``quartics=False`` respectively. If cubic
    roots are real but are expressed in terms of complex numbers
    (casus irreducibilis [1]) the ``trig`` flag can be set to True to
    have the solutions returned in terms of cosine and inverse cosine
    functions.

    To get roots from a specific domain set the ``filter`` flag with
    one of the following specifiers: Z, Q, R, I, C. By default all
    roots are returned (this is equivalent to setting ``filter='C'``).

    By default a dictionary is returned giving a compact result in
    case of multiple roots.  However to get a list containing all
    those roots set the ``multiple`` flag to True; the list will
    have identical roots appearing next to each other in the result.
    (For a given Poly, the all_roots method will give the roots in
    sorted numerical order.)

    Examples
    ========

    >>> from diofant import Poly, roots, sqrt
    >>> from diofant.abc import x, y

    >>> roots(x**2 - 1, x) == {-1: 1, 1: 1}
    True

    >>> p = Poly(x**2-1, x)
    >>> roots(p) == {-1: 1, 1: 1}
    True

    >>> p = Poly(x**2-y, x, y)

    >>> roots(Poly(p, x)) == {-sqrt(y): 1, sqrt(y): 1}
    True

    >>> roots(x**2 - y, x) == {-sqrt(y): 1, sqrt(y): 1}
    True

    >>> roots([1, 0, -1]) == {-1: 1, 1: 1}
    True

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
    """
    from diofant.polys.polytools import to_rational_coeffs
    flags = dict(flags)

    auto = flags.pop('auto', True)
    cubics = flags.pop('cubics', True)
    trig = flags.pop('trig', False)
    quartics = flags.pop('quartics', True)
    quintics = flags.pop('quintics', False)
    multiple = flags.pop('multiple', False)
    filter = flags.pop('filter', None)
    predicate = flags.pop('predicate', None)

    if isinstance(f, list):
        if gens:
            raise ValueError('redundant generators given')

        x = Dummy('x')

        poly, i = {}, len(f) - 1

        for coeff in f:
            poly[i], i = sympify(coeff), i - 1

        f = Poly(poly, x, field=True)
    else:
        try:
            f = Poly(f, *gens, **flags)
            if f.length == 2 and f.degree() != 1:
                # check for foo**n factors in the constant
                n = f.degree()
                npow_bases = []
                expr = f.as_expr()
                con = expr.as_independent(*gens)[0]
                for p in Mul.make_args(con):
                    if p.is_Pow and not p.exp % n:
                        npow_bases.append(p.base**(p.exp/n))
                    else:
                        other.append(p)
                    if npow_bases:
                        b = Mul(*npow_bases)
                        B = Dummy()
                        d = roots(Poly(expr - con + B**n*Mul(*others), *gens,
                            **flags), *gens, **flags)
                        rv = {}
                        for k, v in d.items():
                            rv[k.subs(B, b)] = v
                        return rv

        except GeneratorsNeeded:
            if multiple:
                return []
            else:
                return {}

        if f.is_multivariate:
            raise PolynomialError('multivariate polynomials are not supported')

    def _update_dict(result, root, k):
        if root in result:
            result[root] += k
        else:
            result[root] = k

    def _try_decompose(f):
        """Find roots using functional decomposition. """
        factors, roots = f.decompose(), []

        for root in _try_heuristics(factors[0]):
            roots.append(root)

        for factor in factors[1:]:
            previous, roots = list(roots), []

            for root in previous:
                g = factor - Poly(root, f.gen)

                for root in _try_heuristics(g):
                    roots.append(root)

        return roots

    def _try_heuristics(f):
        """Find roots using formulas and some tricks. """
        if f.is_ground:
            return []
        if f.is_monomial:
            return [Integer(0)]*f.degree()

        if f.length() == 2:
            if f.degree() == 1:
                return list(map(cancel, roots_linear(f)))
            else:
                return roots_binomial(f)

        result = []

        for i in [-1, 1]:
            if not f.eval(i):
                f = f.quo(Poly(f.gen - i, f.gen))
                result.append(i)
                break

        n = f.degree()

        if n == 1:
            result += list(map(cancel, roots_linear(f)))
        elif n == 2:
            result += list(map(cancel, roots_quadratic(f)))
        elif f.is_cyclotomic:
            result += roots_cyclotomic(f)
        elif n == 3 and cubics:
            result += roots_cubic(f, trig=trig)
        elif n == 4 and quartics:
            result += roots_quartic(f)
        elif n == 5 and quintics:
            result += roots_quintic(f)

        return result

    (k,), f = f.terms_gcd()

    if not k:
        zeros = {}
    else:
        zeros = {Integer(0): k}

    coeff, f = preprocess_roots(f)

    if auto and f.get_domain().has_Ring:
        f = f.to_field()

    rescale_x = None
    translate_x = None

    result = {}

    if not f.is_ground:
        if not f.get_domain().is_Exact:
            for r in f.nroots():
                _update_dict(result, r, 1)
        elif f.degree() == 1:
            result[roots_linear(f)[0]] = 1
        elif f.length() == 2:
            roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
            for r in roots_fun(f):
                _update_dict(result, r, 1)
        else:
            _, factors = Poly(f.as_expr()).factor_list()
            if len(factors) == 1 and f.degree() == 2:
                for r in roots_quadratic(f):
                    _update_dict(result, r, 1)
            else:
                if len(factors) == 1 and factors[0][1] == 1:
                    if f.get_domain().is_EX:
                        res = to_rational_coeffs(f)
                        if res:
                            if res[0] is None:
                                translate_x, f = res[2:]
                            else:
                                rescale_x, f = res[1], res[-1]
                            result = roots(f)
                            if not result:
                                for root in _try_decompose(f):
                                    _update_dict(result, root, 1)
                    else:
                        for root in _try_decompose(f):
                            _update_dict(result, root, 1)
                else:
                    for factor, k in factors:
                        for r in _try_heuristics(Poly(factor, f.gen, field=True)):
                            _update_dict(result, r, k)

    if coeff is not S.One:
        _result, result, = result, {}

        for root, k in _result.items():
            result[coeff*root] = k

    result.update(zeros)

    if filter not in [None, 'C']:
        handlers = {
            'Z': lambda r: r.is_Integer,
            'Q': lambda r: r.is_Rational,
            'R': lambda r: r.is_extended_real,
            'I': lambda r: r.is_imaginary,
        }

        try:
            query = handlers[filter]
        except KeyError:
            raise ValueError("Invalid filter: %s" % filter)

        for zero in dict(result).keys():
            if not query(zero):
                del result[zero]

    if predicate is not None:
        for zero in dict(result).keys():
            if not predicate(zero):
                del result[zero]
    if rescale_x:
        result1 = {}
        for k, v in result.items():
            result1[k*rescale_x] = v
        result = result1
    if translate_x:
        result1 = {}
        for k, v in result.items():
            result1[k + translate_x] = v
        result = result1

    if not multiple:
        return result
    else:
        zeros = []

        for zero in ordered(result):
            zeros.extend([zero]*result[zero])

        return zeros
コード例 #29
0
from diofant.functions.elementary.miscellaneous import sqrt
from diofant.functions.elementary.trigonometric import cos
from diofant.functions.special.gamma_functions import gamma
from diofant.functions.special.hyper import hyper

from diofant.polys.orthopolys import (
    jacobi_poly,
    gegenbauer_poly,
    chebyshevt_poly,
    chebyshevu_poly,
    laguerre_poly,
    hermite_poly,
    legendre_poly
)

_x = Dummy('dummy_for_special_polynomials')


class OrthogonalPolynomial(Function):
    """Base class for orthogonal polynomials.
    """

    @classmethod
    def _eval_at_order(cls, n, x):
        if n.is_integer and n >= 0:
            return cls._ortho_poly(int(n), _x).subs(_x, x)

    def _eval_conjugate(self):
        return self.func(self.args[0], self.args[1].conjugate())

############################################################################
コード例 #30
0
def continued_fraction_reduce(cf):
    """Reduce a continued fraction to a rational or quadratic irrational.

    Compute the rational or quadratic irrational number from its
    terminating or periodic continued fraction expansion.  The
    continued fraction expansion (cf) should be supplied as a
    terminating iterator supplying the terms of the expansion.  For
    terminating continued fractions, this is equivalent to
    ``list(continued_fraction_convergents(cf))[-1]``, only a little more
    efficient.  If the expansion has a repeating part, a list of the
    repeating terms should be returned as the last element from the
    iterator.  This is the format returned by
    continued_fraction_periodic.

    For quadratic irrationals, returns the largest solution found,
    which is generally the one sought, if the fraction is in canonical
    form (all terms positive except possibly the first).

    Examples
    ========

    >>> from diofant.ntheory.continued_fraction import continued_fraction_reduce
    >>> continued_fraction_reduce([1, 2, 3, 4, 5])
    225/157
    >>> continued_fraction_reduce([-2, 1, 9, 7, 1, 2])
    -256/233
    >>> continued_fraction_reduce([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]).n(10)
    2.718281835
    >>> continued_fraction_reduce([1, 4, 2, [3, 1]])
    (sqrt(21) + 287)/238
    >>> continued_fraction_reduce([[1]])
    1/2 + sqrt(5)/2
    >>> from diofant.ntheory.continued_fraction import continued_fraction_periodic
    >>> continued_fraction_reduce(continued_fraction_periodic(8, 5, 13))
    (sqrt(13) + 8)/5

    See Also
    ========

    continued_fraction_periodic
    """
    from diofant.core.symbol import Dummy
    from diofant.solvers import solve

    period = []
    x = Dummy('x')

    def untillist(cf):
        for nxt in cf:
            if isinstance(nxt, list):
                period.extend(nxt)
                yield x
                break
            yield nxt

    a = Integer(0)
    for a in continued_fraction_convergents(untillist(cf)):
        pass

    if period:
        y = Dummy('y')
        solns = solve(continued_fraction_reduce(period + [y]) - y, y)
        solns.sort()
        pure = solns[-1]
        return a.subs(x, pure).radsimp()
    else:
        return a