def test_heurisch_hyperbolic(): assert heurisch(sinh(x), x) == cosh(x) assert heurisch(cosh(x), x) == sinh(x) assert heurisch(x*sinh(x), x) == x*cosh(x) - sinh(x) assert heurisch(x*cosh(x), x) == x*sinh(x) - cosh(x) assert heurisch( x*asinh(x/2), x) == x**2*asinh(x/2)/2 + asinh(x/2) - x*sqrt(4 + x**2)/4
def test_heurisch_hyperbolic(): assert heurisch(sinh(x), x) == cosh(x) assert heurisch(cosh(x), x) == sinh(x) assert heurisch(x * sinh(x), x) == x * cosh(x) - sinh(x) assert heurisch(x * cosh(x), x) == x * sinh(x) - cosh(x) assert heurisch( x * asinh(x / 2), x) == x**2 * asinh(x / 2) / 2 + asinh(x / 2) - x * sqrt(4 + x**2) / 4
def test_heurisch_function_derivative(): # TODO: it looks like this used to work just by coincindence and # thanks to sloppy implementation. Investigate why this used to # work at all and if support for this can be restored. df = diff(f(x), x) assert heurisch(f(x) * df, x) == f(x)**2 / 2 assert heurisch(f(x)**2 * df, x) == f(x)**3 / 3 assert heurisch(df / f(x), x) == log(f(x))
def test_pmint_besselj(): # TODO: in both cases heurisch() gives None. Wrong besselj() derivative? f = besselj(nu + 1, x)/besselj(nu, x) g = nu*log(x) - log(besselj(nu, x)) assert simplify(heurisch(f, x) - g) == 0 f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x g = besselj(nu, x) assert simplify(heurisch(f, x) - g) == 0
def test_pmint_besselj(): # TODO: in both cases heurisch() gives None. Wrong besselj() derivative? f = besselj(nu + 1, x) / besselj(nu, x) g = nu * log(x) - log(besselj(nu, x)) assert heurisch(f, x) == g f = (nu * besselj(nu, x) - x * besselj(nu + 1, x)) / x g = besselj(nu, x) assert heurisch(f, x) == g
def test_heurisch_exp(): assert heurisch(exp(x), x) == exp(x) assert heurisch(exp(-x), x) == -exp(-x) assert heurisch(exp(17*x), x) == exp(17*x) / 17 assert heurisch(x*exp(x), x) == x*exp(x) - exp(x) assert heurisch(x*exp(x**2), x) == exp(x**2) / 2 assert heurisch(exp(-x**2), x) is None assert heurisch(2**x, x) == 2**x/log(2) assert heurisch(x*2**x, x) == x*2**x/log(2) - 2**x*log(2)**(-2) assert heurisch(Integral(x**z*y, (y, 1, 2), (z, 2, 3)).function, x) == (x*x**z*y)/(z+1) assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z/log(x)
def test_heurisch_exp(): assert heurisch(exp(x), x) == exp(x) assert heurisch(exp(-x), x) == -exp(-x) assert heurisch(exp(17 * x), x) == exp(17 * x) / 17 assert heurisch(x * exp(x), x) == x * exp(x) - exp(x) assert heurisch(x * exp(x**2), x) == exp(x**2) / 2 assert heurisch(exp(-x**2), x) is None assert heurisch(2**x, x) == 2**x / log(2) assert heurisch(x * 2**x, x) == x * 2**x / log(2) - 2**x * log(2)**(-2) assert heurisch(Integral(x**z * y, (y, 1, 2), (z, 2, 3)).function, x) == (x * x**z * y) / (z + 1) assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z / log(x)
def test_heurisch_radicals(): assert heurisch(1/sqrt(x), x) == 2*sqrt(x) assert heurisch(1/sqrt(x)**3, x) == -2/sqrt(x) assert heurisch(sqrt(x)**3, x) == 2*sqrt(x)**5/5 assert heurisch(sin(x)*sqrt(cos(x)), x) == -2*sqrt(cos(x))**3/3 y = Symbol('y') assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \ 2*sqrt(x)*cos(y*sqrt(x))/y assert heurisch_wrapper(sin(y*sqrt(x)), x) == Piecewise( (0, Eq(y, 0)), (-2*sqrt(x)*cos(sqrt(x)*y)/y + 2*sin(sqrt(x)*y)/y**2, True)) y = Symbol('y', positive=True) assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \ 2*sqrt(x)*cos(y*sqrt(x))/y
def test_heurisch_radicals(): assert heurisch(1 / sqrt(x), x) == 2 * sqrt(x) assert heurisch(1 / sqrt(x)**3, x) == -2 / sqrt(x) assert heurisch(sqrt(x)**3, x) == 2 * sqrt(x)**5 / 5 assert heurisch(sin(x) * sqrt(cos(x)), x) == -2 * sqrt(cos(x))**3 / 3 y = Symbol('y') assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \ 2*sqrt(x)*cos(y*sqrt(x))/y assert heurisch_wrapper(sin(y * sqrt(x)), x) == Piecewise( (0, Eq(y, 0)), (-2 * sqrt(x) * cos(sqrt(x) * y) / y + 2 * sin(sqrt(x) * y) / y**2, True)) y = Symbol('y', positive=True) assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \ 2*sqrt(x)*cos(y*sqrt(x))/y
def test_pmint_WrightOmega(): def omega(x): return LambertW(exp(x)) f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x))))/(1 + omega(x))/(x + omega(x)) g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x))) assert heurisch(f, x) == g
def test_pmint_logexp(): f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x g = log(x**2 + 2*x*exp(x) + 2*x*log(x) + exp(2*x) + 2*exp(x)*log(x) + log(x)**2)/2 + 1/(x + exp(x) + log(x)) # TODO: Optimal solution is g = 1/(x + log(x) + exp(x)) + log(x + log(x) + exp(x)), # but Diofant requires a lot of guidance to properly simplify heurisch() output. assert ratsimp(heurisch(f, x)) == g
def test_pmint_WrightOmega(): def omega(x): return LambertW(exp(x)) f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x)))) / (1 + omega(x)) / (x + omega(x)) g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x))) assert heurisch(f, x) == g
def test_pmint_logexp(): f = (1 + x + x * exp(x)) * (x + log(x) + exp(x) - 1) / (x + log(x) + exp(x))**2 / x g = log(x**2 + 2 * x * exp(x) + 2 * x * log(x) + exp(2 * x) + 2 * exp(x) * log(x) + log(x)**2) / 2 + 1 / (x + exp(x) + log(x)) # TODO: Optimal solution is g = 1/(x + log(x) + exp(x)) + log(x + log(x) + exp(x)), # but Diofant requires a lot of guidance to properly simplify heurisch() output. assert ratsimp(heurisch(f, x)) == g
def test_pmint_rat(): # TODO: heurisch() is off by a constant: -3/4. Possibly different permutation # would give the optimal result? def drop_const(expr, x): if expr.is_Add: return Add(*[ arg for arg in expr.args if arg.has(x) ]) else: return expr f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2) g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x) assert drop_const(ratsimp(heurisch(f, x)), x) == g
def test_heurisch_hacking(): assert (heurisch(sqrt(1 + 7*x**2), x, hints=[]) == x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14) assert (heurisch(sqrt(1 - 7*x**2), x, hints=[]) == x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14) assert (heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == sqrt(7)*asinh(sqrt(7)*x)/7) assert (heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == sqrt(7)*asin(sqrt(7)*x)/7) assert (heurisch(exp(-7*x**2), x, hints=[]) == sqrt(7*pi)*erf(sqrt(7)*x)/14) assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == asin(2*x/3)/2 assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == asinh(2*x/3)/2 assert heurisch(li(x), x, hints=[]) == x*li(x) - Ei(2*log(x))
def test_pmint_rat(): # TODO: heurisch() is off by a constant: -3/4. Possibly different permutation # would give the optimal result? def drop_const(expr, x): if expr.is_Add: return Add(*[arg for arg in expr.args if arg.has(x)]) else: return expr f = (x**7 - 24 * x**4 - 4 * x**2 + 8 * x - 8) / (x**8 + 6 * x**6 + 12 * x**4 + 8 * x**2) g = (4 + 8 * x**2 + 6 * x + 3 * x**3) / (x**5 + 4 * x**3 + 4 * x) + log(x) assert drop_const(ratsimp(heurisch(f, x)), x) == g
def test_heurisch_fractions(): assert heurisch(1/x, x) == log(x) assert heurisch(1/(2 + x), x) == log(x + 2) assert heurisch(1/(x + sin(y)), x) == log(x + sin(y)) # Up to a constant, where C = 5*pi*I/12, Mathematica gives identical # result in the first case. The difference is because diofant changes # signs of expressions without any care. # XXX ^ ^ ^ is this still correct? assert heurisch(5*x**5/( 2*x**6 - 5), x) in [5*log(2*x**6 - 5) / 12, 5*log(-2*x**6 + 5) / 12] assert heurisch(5*x**5/(2*x**6 + 5), x) == 5*log(2*x**6 + 5) / 12 assert heurisch(1/x**2, x) == -1/x assert heurisch(-1/x**5, x) == 1/(4*x**4)
def test_heurisch_fractions(): assert heurisch(1 / x, x) == log(x) assert heurisch(1 / (2 + x), x) == log(x + 2) assert heurisch(1 / (x + sin(y)), x) == log(x + sin(y)) # Up to a constant, where C = 5*pi*I/12, Mathematica gives identical # result in the first case. The difference is because diofant changes # signs of expressions without any care. # XXX ^ ^ ^ is this still correct? assert heurisch(5 * x**5 / (2 * x**6 - 5), x) in [ 5 * log(2 * x**6 - 5) / 12, 5 * log(-2 * x**6 + 5) / 12 ] assert heurisch(5 * x**5 / (2 * x**6 + 5), x) == 5 * log(2 * x**6 + 5) / 12 assert heurisch(1 / x**2, x) == -1 / x assert heurisch(-1 / x**5, x) == 1 / (4 * x**4)
def test_heurisch_hacking(): assert (heurisch(sqrt(1 + 7 * x**2), x, hints=[]) == x * sqrt(1 + 7 * x**2) / 2 + sqrt(7) * asinh(sqrt(7) * x) / 14) assert (heurisch(sqrt(1 - 7 * x**2), x, hints=[]) == x * sqrt(1 - 7 * x**2) / 2 + sqrt(7) * asin(sqrt(7) * x) / 14) assert (heurisch(1 / sqrt(1 + 7 * x**2), x, hints=[]) == sqrt(7) * asinh(sqrt(7) * x) / 7) assert (heurisch(1 / sqrt(1 - 7 * x**2), x, hints=[]) == sqrt(7) * asin(sqrt(7) * x) / 7) assert (heurisch(exp(-7 * x**2), x, hints=[]) == sqrt(7 * pi) * erf(sqrt(7) * x) / 14) assert heurisch(1 / sqrt(9 - 4 * x**2), x, hints=[]) == asin(2 * x / 3) / 2 assert heurisch(1 / sqrt(9 + 4 * x**2), x, hints=[]) == asinh(2 * x / 3) / 2 assert heurisch(li(x), x, hints=[]) == x * li(x) - Ei(2 * log(x))
def test_heurisch_hacking(): assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \ x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14 assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \ x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14 assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \ sqrt(7)*asinh(sqrt(7)*x)/7 assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \ sqrt(7)*asin(sqrt(7)*x)/7 assert heurisch(exp(-7*x**2), x, hints=[]) == \ sqrt(7*pi)*erf(sqrt(7)*x)/14 assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \ asin(2*x/3)/2 assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \ asinh(2*x/3)/2
def test_heurisch_special(): assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi) assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4
def test_heurisch_special(): assert heurisch(erf(x), x) == x * erf(x) + exp(-x**2) / sqrt(pi) assert heurisch(exp(-x**2) * erf(x), x) == sqrt(pi) * erf(x)**2 / 4
def test_heurisch_symbolic_coeffs(): assert heurisch(1 / (x + y), x) == log(x + y) assert heurisch(1 / (x + sqrt(2)), x) == log(x + sqrt(2)) assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z)
def _eval_integral(self, f, x, meijerg=None, risch=None, conds='piecewise'): """ Calculate the anti-derivative to the function f(x). The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in Diofant), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. """ from diofant.integrals.deltafunctions import deltaintegrate from diofant.integrals.heurisch import heurisch, heurisch_wrapper from diofant.integrals.rationaltools import ratint from diofant.integrals.risch import risch_integrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a diofant expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not meijerg: return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if f.func is Piecewise: return f._eval_integral(x) # let's cut it short if `f` does not depend on `x` if not f.has(x): return f * x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not meijerg: return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff * x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x) if h is not None: parts.append(coeff * (h + self.func(order_term, *self.limits))) continue # NOTE: if there is O(x**n) and we fail to integrate then there is # no point in trying other methods because they will fail anyway. return # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a * x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h1, Eq(g.exp, -1)), (h2, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not meijerg: parts.append(coeff * ratint(g, x)) continue if not meijerg: # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff * h) continue # fall back to heurisch try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: from diofant.integrals.meijerint import _debug _debug('NotImplementedError from meijerint_definite') res = None if h is not None: parts.append(coeff * h) continue # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = f.expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, meijerg=meijerg, risch=risch, conds=conds) if h is not None: parts.append(coeff * h) else: return return Add(*parts)
def test_pmint_erf(): f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1) g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4) assert ratsimp(heurisch(f, x)) == g
def test_pmint_trig(): f = (x - tan(x)) / tan(x)**2 + tan(x) g = -x**2 / 2 - x / tan(x) + log(tan(x)**2 + 1) / 2 assert heurisch(f, x) == g
def test_pmint_erf(): f = exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1) g = sqrt(pi) * log(erf(x) - 1) / 8 - sqrt(pi) * log(erf(x) + 1) / 8 - sqrt( pi) / (4 * erf(x) - 4) assert ratsimp(heurisch(f, x)) == g
def test_heurisch_function(): assert heurisch(f(x), x) is None
def test_sympyissue_3609(): assert heurisch(1/(x * (1 + log(x)**2)), x) == I*log(log(x) + I)/2 - \ I*log(log(x) - I)/2
def test_heurisch_symbolic_coeffs(): assert heurisch(1/(x + y), x) == log(x + y) assert heurisch(1/(x + sqrt(2)), x) == log(x + sqrt(2)) assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z)
def test_pmint_LambertW(): f = LambertW(x) g = x*LambertW(x) - x + x/LambertW(x) assert heurisch(f, x) == g
def test_RR(): # Make sure the algorithm does the right thing if the ring is RR. See # issue sympy/sympy#8685. assert heurisch(sqrt(1 + 0.25*x**2), x, hints=[]) == \ 0.5*x*sqrt(0.25*x**2 + 1) + 1.0*asinh(0.5*x)
def test_atom_bug(): from diofant import meijerg from diofant.integrals.heurisch import heurisch assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_heurisch_trigonometric(): assert heurisch(sin(x), x) == -cos(x) assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x) assert heurisch(cos(x), x) == sin(x) assert heurisch(tan(x), x) in [ log(1 + tan(x)**2)/2, log(tan(x) + I) + I*x, log(tan(x) - I) - I*x, ] assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y) assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x) # gives sin(x) in answer when run via setup.py and cos(x) when run via py.test assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2] assert heurisch(cos(x)/sin(x), x) == log(sin(x)) assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7 assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) - 2*sin(x) + 2*x*cos(x)) assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \ + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)
def test_heurisch_trigonometric(): assert heurisch(sin(x), x) == -cos(x) assert heurisch(pi * sin(x) + 1, x) == x - pi * cos(x) assert heurisch(cos(x), x) == sin(x) assert heurisch(tan(x), x) in [ log(1 + tan(x)**2) / 2, log(tan(x) + I) + I * x, log(tan(x) - I) - I * x, ] assert heurisch(sin(x) * sin(y), x) == -cos(x) * sin(y) assert heurisch(sin(x) * sin(y), y) == -cos(y) * sin(x) assert heurisch(sin(x) * cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2] assert heurisch(cos(x) / sin(x), x) == log(sin(x)) assert heurisch(x * sin(7 * x), x) == sin(7 * x) / 49 - x * cos(7 * x) / 7 assert heurisch( 1 / pi / 4 * x**2 * cos(x), x) == 1 / pi / 4 * (x**2 * sin(x) - 2 * sin(x) + 2 * x * cos(x)) assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \ + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4) assert heurisch(1 / sin(1 / x) / x**2, x) == -log(tan(1 / x / 2))
def test_heurisch_mixed(): assert heurisch(sin(x)*exp(x), x) == exp(x)*sin(x)/2 - exp(x)*cos(x)/2
def test_heurisch_hacking(): assert (heurisch(sqrt(1 + 7 * x**2), x, hints=[]) == x * sqrt(1 + 7 * x**2) / 2 + sqrt(7) * asinh(sqrt(7) * x) / 14) assert (heurisch(sqrt(1 - 7 * x**2), x, hints=[]) == x * sqrt(1 - 7 * x**2) / 2 + sqrt(7) * asin(sqrt(7) * x) / 14) assert heurisch(sqrt(y * x**2 - 1), x, hints=[]) is None assert (heurisch(1 / sqrt(1 + 7 * x**2), x, hints=[]) == sqrt(7) * asinh(sqrt(7) * x) / 7) assert (heurisch(1 / sqrt(1 - 7 * x**2), x, hints=[]) == sqrt(7) * asin(sqrt(7) * x) / 7) assert heurisch(exp(-7 * x**2), x, hints=[]) == sqrt(7 * pi) * erf(sqrt(7) * x) / 14 assert heurisch(exp(2 * x**2), x, hints=[]) == sqrt(2) * sqrt(pi) * erfi(sqrt(2) * x) / 4 assert (heurisch(exp(2 * x**2 - 3 * x), x, hints=[]) == sqrt(2) * sqrt(pi) * erfi(sqrt(2) * x - 3 * sqrt(2) / 4) / (4 * E**Rational(9, 8))) assert heurisch(1 / sqrt(9 - 4 * x**2), x, hints=[]) == asin(2 * x / 3) / 2 assert heurisch(1 / sqrt(9 + 4 * x**2), x, hints=[]) == asinh(2 * x / 3) / 2 assert heurisch(li(x), x, hints=[]) == x * li(x) - Ei(2 * log(x)) assert heurisch(li(log(x)), x, hints=[]) is None assert (heurisch(sqrt(1 + x), x, hints=[x, sqrt(1 + x)]) == 2 * x * sqrt(x + 1) / 3 + 2 * sqrt(x + 1) / 3)
def test_heurisch_mixed(): assert heurisch(sin(x) * exp(x), x) == exp(x) * sin(x) / 2 - exp(x) * cos(x) / 2
def test_pmint_LambertW(): f = LambertW(x) g = x * LambertW(x) - x + x / LambertW(x) assert heurisch(f, x) == g
def test_atom_bug(): assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_pmint_trig(): f = (x - tan(x)) / tan(x)**2 + tan(x) g = -x**2/2 - x/tan(x) + log(tan(x)**2 + 1)/2 assert heurisch(f, x) == g
def test_heurisch_polynomials(): assert heurisch(1, x) == x assert heurisch(x, x) == x**2 / 2 assert heurisch(x**17, x) == x**18 / 18
def test_heurisch_polynomials(): assert heurisch(1, x) == x assert heurisch(x, x) == x**2/2 assert heurisch(x**17, x) == x**18/18
def test_heurisch_log(): assert heurisch(log(x), x) == x * log(x) - x assert heurisch(log(3 * x), x) == -x + x * log(3) + x * log(x) assert heurisch(log(x**2), x) in [x * log(x**2) - 2 * x, 2 * x * log(x) - 2 * x]
def test_heurisch_log(): assert heurisch(log(x), x) == x*log(x) - x assert heurisch(log(3*x), x) == -x + x*log(3) + x*log(x) assert heurisch(log(x**2), x) in [x*log(x**2) - 2*x, 2*x*log(x) - 2*x]
def test_heurisch_trigonometric(): assert heurisch(sin(x), x) == -cos(x) assert heurisch(pi * sin(x) + 1, x) == x - pi * cos(x) assert heurisch(cos(x), x) == sin(x) assert heurisch(tan(x), x) in [ log(1 + tan(x)**2) / 2, log(tan(x) + I) + I * x, log(tan(x) - I) - I * x, ] assert heurisch(sin(x) * sin(y), x) == -cos(x) * sin(y) assert heurisch(sin(x) * sin(y), y) == -cos(y) * sin(x) # gives sin(x) in answer when run via setup.py and cos(x) when run via py.test assert heurisch(sin(x) * cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2] assert heurisch(cos(x) / sin(x), x) == log(sin(x)) assert heurisch(x * sin(7 * x), x) == sin(7 * x) / 49 - x * cos(7 * x) / 7 assert heurisch( 1 / pi / 4 * x**2 * cos(x), x) == 1 / pi / 4 * (x**2 * sin(x) - 2 * sin(x) + 2 * x * cos(x)) assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \ + (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)