コード例 #1
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1
    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
コード例 #2
0
def dup_invert(f, g, K):
    """
    Compute multiplicative inverse of `f` modulo `g` in `F[x]`.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**2 - 1
    >>> g = 2*x - 1
    >>> h = x - 1

    >>> R.dup_invert(f, g)
    -4/3

    >>> R.dup_invert(f, h)
    Traceback (most recent call last):
    ...
    NotInvertible: zero divisor

    """
    s, h = dup_half_gcdex(f, g, K)

    if h == [K.one]:
        return dup_rem(s, g, K)
    else:
        raise NotInvertible("zero divisor")
コード例 #3
0
ファイル: test_densearith.py プロジェクト: goretkin/diofant
def test_dup_div():
    f, g, q, r = [5, 4, 3, 2, 1], [1, 2, 3], [5, -6, 0], [20, 1]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    pytest.raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))

    f, g, q, r = [5, 4, 3, 2, 1, 0], [1, 2, 0, 0, 9], [5, -6], [15, 2, -44, 54]

    assert dup_div(f, g, ZZ) == (q, r)
    assert dup_quo(f, g, ZZ) == q
    assert dup_rem(f, g, ZZ) == r

    pytest.raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))
コード例 #4
0
def dup_euclidean_prs(f, g, K):
    """
    Euclidean polynomial remainder sequence (PRS) in `K[x]`.

    Examples
    ========

    >>> from diofant.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
    >>> g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21

    >>> prs = R.dup_euclidean_prs(f, g)

    >>> prs[0]
    x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
    >>> prs[1]
    3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
    >>> prs[2]
    -5/9*x**4 + 1/9*x**2 - 1/3
    >>> prs[3]
    -117/25*x**2 - 9*x + 441/25
    >>> prs[4]
    233150/19773*x - 102500/6591
    >>> prs[5]
    -1288744821/543589225

    """
    prs = [f, g]
    h = dup_rem(f, g, K)

    while h:
        prs.append(h)
        f, g = g, h
        h = dup_rem(f, g, K)

    return prs