def test_dup_from_to_dict(): assert dup_from_raw_dict({}, ZZ) == [] assert dup_from_dict({}, ZZ) == [] assert dup_to_raw_dict([]) == {} assert dup_to_dict([]) == {} assert dup_to_raw_dict([], ZZ, zero=True) == {0: ZZ(0)} assert dup_to_dict([], ZZ, zero=True) == {(0,): ZZ(0)} f = [3, 0, 0, 2, 0, 0, 0, 0, 8] g = {8: 3, 5: 2, 0: 8} h = {(8,): 3, (5,): 2, (0,): 8} assert dup_from_raw_dict(g, ZZ) == f assert dup_from_dict(h, ZZ) == f assert dup_to_raw_dict(f) == g assert dup_to_dict(f) == h R, x, y = ring("x,y", ZZ) K = R.to_domain() f = [R(3), R(0), R(2), R(0), R(0), R(8)] g = {5: R(3), 3: R(2), 0: R(8)} h = {(5,): R(3), (3,): R(2), (0,): R(8)} assert dup_from_raw_dict(g, K) == f assert dup_from_dict(h, K) == f assert dup_to_raw_dict(f) == g assert dup_to_dict(f) == h
def _dup_right_decompose(f, s, K): """Helper function for :func:`_dup_decompose`.""" n = len(f) - 1 lc = dup_LC(f, K) f = dup_to_raw_dict(f) g = {s: K.one} r = n // s for i in range(1, s): coeff = K.zero for j in range(0, i): if not n + j - i in f: continue if not s - j in g: continue fc, gc = f[n + j - i], g[s - j] coeff += (i - r * j) * fc * gc g[s - i] = K.quo(coeff, i * r * lc) return dup_from_raw_dict(g, K)
def test_dup_integrate(): assert dup_integrate([], 1, QQ) == [] assert dup_integrate([], 2, QQ) == [] assert dup_integrate([QQ(1)], 1, QQ) == [QQ(1), QQ(0)] assert dup_integrate([QQ(1)], 2, QQ) == [QQ(1, 2), QQ(0), QQ(0)] assert dup_integrate([QQ(1), QQ(2), QQ(3)], 0, QQ) == \ [QQ(1), QQ(2), QQ(3)] assert dup_integrate([QQ(1), QQ(2), QQ(3)], 1, QQ) == \ [QQ(1, 3), QQ(1), QQ(3), QQ(0)] assert dup_integrate([QQ(1), QQ(2), QQ(3)], 2, QQ) == \ [QQ(1, 12), QQ(1, 3), QQ(3, 2), QQ(0), QQ(0)] assert dup_integrate([QQ(1), QQ(2), QQ(3)], 3, QQ) == \ [QQ(1, 60), QQ(1, 12), QQ(1, 2), QQ(0), QQ(0), QQ(0)] assert dup_integrate(dup_from_raw_dict({29: QQ(17)}, QQ), 3, QQ) == \ dup_from_raw_dict({32: QQ(17, 29760)}, QQ) assert dup_integrate(dup_from_raw_dict({29: QQ(17), 5: QQ(1, 2)}, QQ), 3, QQ) == \ dup_from_raw_dict({32: QQ(17, 29760), 8: QQ(1, 672)}, QQ)
def _dup_left_decompose(f, h, K): """Helper function for :func:`_dup_decompose`.""" g, i = {}, 0 while f: q, r = dup_div(f, h, K) if dup_degree(r) > 0: return else: g[i] = dup_LC(r, K) f, i = q, i + 1 return dup_from_raw_dict(g, K)
def dmp_fateman_poly_F_3(n, K): """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """ u = dup_from_raw_dict({n + 1: K.one}, K) for i in range(0, n - 1): u = dmp_add_term([u], dmp_one(i, K), n + 1, i + 1, K) v = dmp_add_term(u, dmp_ground(K(2), n - 2), 0, n, K) f = dmp_sqr( dmp_add_term([dmp_neg(v, n - 1, K)], dmp_one(n - 1, K), n + 1, n, K), n, K) g = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K) v = dmp_add_term(u, dmp_one(n - 2, K), 0, n - 1, K) h = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K) return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def test_dup_deflate(): assert dup_deflate([], ZZ) == (1, []) assert dup_deflate([2], ZZ) == (1, [2]) assert dup_deflate([1, 2, 3], ZZ) == (1, [1, 2, 3]) assert dup_deflate([1, 0, 2, 0, 3], ZZ) == (2, [1, 2, 3]) assert dup_deflate(dup_from_raw_dict({7: 1, 1: 1}, ZZ), ZZ) == \ (1, [1, 0, 0, 0, 0, 0, 1, 0]) assert dup_deflate(dup_from_raw_dict({7: 1, 0: 1}, ZZ), ZZ) == \ (7, [1, 1]) assert dup_deflate(dup_from_raw_dict({7: 1, 3: 1}, ZZ), ZZ) == \ (1, [1, 0, 0, 0, 1, 0, 0, 0]) assert dup_deflate(dup_from_raw_dict({7: 1, 4: 1}, ZZ), ZZ) == \ (1, [1, 0, 0, 1, 0, 0, 0, 0]) assert dup_deflate(dup_from_raw_dict({8: 1, 4: 1}, ZZ), ZZ) == \ (4, [1, 1, 0]) assert dup_deflate(dup_from_raw_dict({8: 1}, ZZ), ZZ) == \ (8, [1, 0]) assert dup_deflate(dup_from_raw_dict({7: 1}, ZZ), ZZ) == \ (7, [1, 0]) assert dup_deflate(dup_from_raw_dict({1: 1}, ZZ), ZZ) == \ (1, [1, 0])