def test_DMP_exclude(): f = [[[[[[[[[[[[[[[[[[[[[[[[[[1]], [[]]]]]]]]]]]]]]]]]]]]]]]]]] J = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25] assert DMP(f, ZZ).exclude() == (J, DMP([1, 0], ZZ)) assert DMP([[1], [1, 0]], ZZ).exclude() == ([], DMP([[1], [1, 0]], ZZ))
def test___hash__(): # issue sympy/sympy#5571 assert DMP([[1, 2], [3]], ZZ) == DMP([[int(1), int(2)], [int(3)]], ZZ) assert hash(DMP([[1, 2], [3]], ZZ)) == hash(DMP([[int(1), int(2)], [int(3)]], ZZ)) assert DMF( ([[1, 2], [3]], [[1]]), ZZ) == DMF(([[int(1), int(2)], [int(3)]], [[int(1)]]), ZZ) assert hash(DMF(([[1, 2], [3]], [[1]]), ZZ)) == hash(DMF(([[int(1), int(2)], [int(3)]], [[int(1)]]), ZZ)) assert ANP([1, 1], [1, 0, 1], ZZ) == ANP([int(1), int(1)], [int(1), int(0), int(1)], ZZ) assert hash( ANP([1, 1], [1, 0, 1], ZZ)) == hash(ANP([int(1), int(1)], [int(1), int(0), int(1)], ZZ))
def test_DMP___eq__(): assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) assert DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[[ZZ(1)]]], ZZ) != DMP([[ZZ(1)]], ZZ) assert DMP([[ZZ(1)]], ZZ) != DMP([[[ZZ(1)]]], ZZ)
def test_pickling_polys_polyclasses(): for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c)
def test_DMP_to_dict(): f = DMP([[3], [], [2], [], [8]], ZZ) assert f.to_dict() == \ {(4, 0): 3, (2, 0): 2, (0, 0): 8} assert f.to_diofant_dict() == \ {(4, 0): ZZ.to_expr(3), (2, 0): ZZ.to_expr(2), (0, 0): ZZ.to_expr(8)}
def test_DMP___init__(): f = DMP([[0], [], [0, 1, 2], [3]], ZZ) assert f.rep == [[1, 2], [3]] assert f.domain == ZZ assert f.lev == 1 f = DMP([[1, 2], [3]], ZZ, 1) assert f.rep == [[1, 2], [3]] assert f.domain == ZZ assert f.lev == 1 f = DMP({(1, 1): 1, (0, 0): 2}, ZZ, 1) assert f.rep == [[1, 0], [2]] assert f.domain == ZZ assert f.lev == 1
def test_DMP___init__(): f = DMP([[0], [], [0, 1, 2], [3]], ZZ) assert f.rep == [[1, 2], [3]] assert f.domain == ZZ assert f.lev == 1 f = DMP([[1, 2], [3]], ZZ, 1) assert f.rep == [[1, 2], [3]] assert f.domain == ZZ assert f.lev == 1 f = DMP({(1, 1): 1, (0, 0): 2}, ZZ, 1) assert f.rep == [[1, 0], [2]] assert f.domain == ZZ assert f.lev == 1 assert f == DMP.from_monoms_coeffs(f.monoms(), f.coeffs(), f.lev, f.domain)
def test_to_algebraic_integer(): a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 3 assert a.root == sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(2 * sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2 * sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(3) / 2, gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2 * sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(3) / 2, [Rational(7, 19), 3], gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2 * sqrt(3) assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ)
def legendre_poly(n, x=None, **args): """Generates Legendre polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Legendre polynomial of degree %s" % n) poly = DMP(dup_legendre(int(n), QQ), QQ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def cyclotomic_poly(n, x=None, **args): """Generates cyclotomic polynomial of order `n` in `x`. """ if n <= 0: raise ValueError("can't generate cyclotomic polynomial of order %s" % n) poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def chebyshevt_poly(n, x=None, **args): """Generates Chebyshev polynomial of the first kind of degree `n` in `x`. """ if n < 0: raise ValueError( "can't generate 1st kind Chebyshev polynomial of degree %s" % n) poly = DMP(dup_chebyshevt(int(n), ZZ), ZZ) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def jacobi_poly(n, a, b, x=None, **args): """Generates Jacobi polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Jacobi polynomial of degree %s" % n) K, v = construct_domain([a, b], field=True) poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def gegenbauer_poly(n, a, x=None, **args): """Generates Gegenbauer polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Gegenbauer polynomial of degree %s" % n) K, a = construct_domain(a, field=True) poly = DMP(dup_gegenbauer(int(n), a, K), K) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def spherical_bessel_fn(n, x=None, **args): """ Coefficients for the spherical Bessel functions. Those are only needed in the jn() function. The coefficients are calculated from: fn(0, z) = 1/z fn(1, z) = 1/z**2 fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z) Examples ======== >>> from diofant import Symbol >>> z = Symbol("z") >>> spherical_bessel_fn(1, z) z**(-2) >>> spherical_bessel_fn(2, z) -1/z + 3/z**3 >>> spherical_bessel_fn(3, z) -6/z**2 + 15/z**4 >>> spherical_bessel_fn(4, z) 1/z - 45/z**3 + 105/z**5 """ if n < 0: dup = dup_spherical_bessel_fn_minus(-int(n), ZZ) else: dup = dup_spherical_bessel_fn(int(n), ZZ) poly = DMP(dup, ZZ) if x is not None: poly = Poly.new(poly, 1 / x) else: poly = PurePoly.new(poly, 1 / Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def laguerre_poly(n, x=None, alpha=None, **args): """Generates Laguerre polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Laguerre polynomial of degree %s" % n) if alpha is not None: K, alpha = construct_domain(alpha, field=True) # XXX: ground_field=True else: K, alpha = QQ, QQ(0) poly = DMP(dup_laguerre(int(n), alpha, K), K) if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) if not args.get('polys', False): return poly.as_expr() else: return poly
def test___hash__(): # issue sympy/sympy#5571 assert DMP([[1, 2], [3]], ZZ) == DMP([[int(1), int(2)], [int(3)]], ZZ) assert hash(DMP([[1, 2], [3]], ZZ)) == hash(DMP([[int(1), int(2)], [int(3)]], ZZ))
def test_AlgebraicNumber(): minpoly, root = x**2 - 2, sqrt(2) a = AlgebraicNumber(root, gen=x) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [Integer(1), Integer(0)] assert a.native_coeffs() == [QQ(1), QQ(0)] a = AlgebraicNumber(root, gen=x, alias='y') assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True a = AlgebraicNumber(root, gen=x, alias=Symbol('y')) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ) assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP( [QQ(7, 9), QQ(3, 2)], QQ) assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ) a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [Integer(1), Integer(2)] assert a.native_coeffs() == [QQ(1), QQ(2)] a = AlgebraicNumber((minpoly, root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False a = AlgebraicNumber((Poly(minpoly), root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert AlgebraicNumber(sqrt(3)).rep == DMP([QQ(1), QQ(0)], QQ) assert AlgebraicNumber(-sqrt(3)).rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(2)) assert a == b c = AlgebraicNumber(sqrt(2), gen=x) d = AlgebraicNumber(sqrt(2), gen=x) assert a == b assert a == c a = AlgebraicNumber(sqrt(2), [1, 2]) b = AlgebraicNumber(sqrt(2), [1, 3]) assert a != b and a != sqrt(2) + 3 assert (a == x) is False and (a != x) is True a = AlgebraicNumber(sqrt(2), [1, 0]) b = AlgebraicNumber(sqrt(2), [1, 0], alias=y) assert a.as_poly(x) == Poly(x) assert b.as_poly() == Poly(y) assert a.as_expr() == sqrt(2) assert a.as_expr(x) == x assert b.as_expr() == sqrt(2) assert b.as_expr(x) == x a = AlgebraicNumber(sqrt(2), [2, 3]) b = AlgebraicNumber(sqrt(2), [2, 3], alias=y) p = a.as_poly() assert p == Poly(2 * p.gen + 3) assert a.as_poly(x) == Poly(2 * x + 3) assert b.as_poly() == Poly(2 * y + 3) assert a.as_expr() == 2 * sqrt(2) + 3 assert a.as_expr(x) == 2 * x + 3 assert b.as_expr() == 2 * sqrt(2) + 3 assert b.as_expr(x) == 2 * x + 3 a = AlgebraicNumber(sqrt(2)) b = to_number_field(sqrt(2)) assert a.args == b.args == (sqrt(2), Tuple(1, 0)) b = AlgebraicNumber(sqrt(2), alias='alpha') assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha')) a = AlgebraicNumber(sqrt(2), [1, 2, 3]) assert a.args == (sqrt(2), Tuple(2, 5)) pytest.raises(ValueError, lambda: AlgebraicNumber(RootOf(x**3 + y * x + 1, x, 0))) a = AlgebraicNumber(RootOf(x**3 + 2 * x - 1, x, 1), alias='alpha') assert a.free_symbols == set() # integer powers: assert a**0 == 1 assert a**2 == AlgebraicNumber(a, (1, 0, 0), alias='alpha') assert a**5 == AlgebraicNumber(a, (1, 0, 0, 0, 0, 0), alias='alpha') assert a**110 == AlgebraicNumber(a, ([1] + [0] * 110), alias='alpha') assert (a**pi).is_Pow b = AlgebraicNumber(sqrt(2), (1, 0), alias='theta') c = b + 1 assert c**2 == 2 * b + 3 assert c**5 == 29 * b + 41 assert c**-2 == 3 - 2 * b assert c**-11 == 5741 * b - 8119 # arithmetics assert a**3 == -2 * a + 1 == a * (-2) + 1 == 1 + (-2) * a == 1 - 2 * a assert a**5 == a**2 + 4 * a - 2 assert a**4 == -2 * a**2 + a == a - 2 * a**2 assert a**110 == (-2489094528619081871 * a**2 + 3737645722703173544 * a - 1182958048412500088) assert a + a == 2 * a assert 2 * a - a == a assert Integer(1) - a == (-a) + 1 assert (a + pi).is_Add assert (pi + a).is_Add assert (a - pi).is_Add assert (pi - a).is_Add assert (a * pi).is_Mul assert (pi * a).is_Mul
def test_DMP_properties(): assert DMP([[]], ZZ).is_zero is True assert DMP([[1]], ZZ).is_zero is False assert DMP([[1]], ZZ).is_one is True assert DMP([[2]], ZZ).is_one is False assert DMP([[1]], ZZ).is_ground is True assert DMP([[1], [2], [1]], ZZ).is_ground is False assert DMP([[1], [2, 0], [1, 0]], ZZ).is_sqf is True assert DMP([[1], [2, 0], [1, 0, 0]], ZZ).is_sqf is False assert DMP([[1, 2], [3]], ZZ).is_monic is True assert DMP([[2, 2], [3]], ZZ).is_monic is False assert DMP([[1, 2], [3]], ZZ).is_primitive is True assert DMP([[2, 4], [6]], ZZ).is_primitive is False
def test_DMP_arithmetics(): f = DMP([[2], [2, 0]], ZZ) assert f.mul_ground(2) == DMP([[4], [4, 0]], ZZ) assert f.quo_ground(2) == DMP([[1], [1, 0]], ZZ) pytest.raises(ExactQuotientFailed, lambda: f.exquo_ground(3)) f = DMP([[-5]], ZZ) g = DMP([[5]], ZZ) assert f.abs() == g assert abs(f) == g assert g.neg() == f assert -g == f h = DMP([[]], ZZ) assert f.add(g) == h assert f + g == h assert g + f == h assert f + 5 == h assert 5 + f == h h = DMP([[-10]], ZZ) assert f.sub(g) == h assert f - g == h assert g - f == -h assert f - 5 == h assert 5 - f == -h h = DMP([[-25]], ZZ) assert f.mul(g) == h assert f * g == h assert g * f == h assert f * 5 == h assert 5 * f == h h = DMP([[25]], ZZ) assert f.sqr() == h assert f.pow(2) == h assert f**2 == h pytest.raises(TypeError, lambda: f.pow('x')) f = DMP([[1], [], [1, 0, 0]], ZZ) g = DMP([[2], [-2, 0]], ZZ) q = DMP([[2], [2, 0]], ZZ) r = DMP([[8, 0, 0]], ZZ) assert f.pdiv(g) == (q, r) assert f.pquo(g) == q assert f.prem(g) == r pytest.raises(ExactQuotientFailed, lambda: f.pexquo(g)) f = DMP([[1], [], [1, 0, 0]], ZZ) g = DMP([[1], [-1, 0]], ZZ) q = DMP([[1], [1, 0]], ZZ) r = DMP([[2, 0, 0]], ZZ) assert f.div(g) == (q, r) assert f.quo(g) == q assert f.rem(g) == r assert divmod(f, g) == (q, r) assert f // g == q assert f // 2 == DMP([[0], [], [0, 0, 0]], QQ) assert f % g == r pytest.raises(ExactQuotientFailed, lambda: f.exquo(g)) f = DMP([[-5]], ZZ) g = DMP([[5]], QQ) h = DMP([[]], QQ) assert f + g == g + f == h
def test_pickling_polys_polyclasses(): for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c)
def test_DMP___bool__(): assert bool(DMP([[]], ZZ)) is False assert bool(DMP([[1]], ZZ)) is True
def test_DMP___eq__(): f = DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert f == f assert f.eq(f) assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) assert DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[[ZZ(1)]]], ZZ) != DMP([[ZZ(1)]], ZZ) assert DMP([[[ZZ(1)]]], ZZ).ne(DMP([[ZZ(1)]], ZZ)) assert DMP([[ZZ(1)]], ZZ) != DMP([[[ZZ(1)]]], ZZ)
def test_AlgebraicNumber(): minpoly, root = x**2 - 2, sqrt(2) a = AlgebraicNumber(root, gen=x) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [Integer(1), Integer(0)] assert a.native_coeffs() == [QQ(1), QQ(0)] a = AlgebraicNumber(root, gen=x, alias='y') assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True a = AlgebraicNumber(root, gen=x, alias=Symbol('y')) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ) assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP( [QQ(7, 9), QQ(3, 2)], QQ) assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ) a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [Integer(1), Integer(2)] assert a.native_coeffs() == [QQ(1), QQ(2)] a = AlgebraicNumber((minpoly, root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False a = AlgebraicNumber((Poly(minpoly), root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert AlgebraicNumber(sqrt(3)).rep == DMP([QQ(1), QQ(0)], QQ) assert AlgebraicNumber(-sqrt(3)).rep == DMP([-QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(2)) assert a == b c = AlgebraicNumber(sqrt(2), gen=x) d = AlgebraicNumber(sqrt(2), gen=x) assert a == b assert a == c a = AlgebraicNumber(sqrt(2), [1, 2]) b = AlgebraicNumber(sqrt(2), [1, 3]) assert a != b and a != sqrt(2) + 3 assert (a == x) is False and (a != x) is True a = AlgebraicNumber(sqrt(2), [1, 0]) b = AlgebraicNumber(sqrt(2), [1, 0], alias=y) assert a.as_poly(x) == Poly(x) assert b.as_poly() == Poly(y) assert a.as_expr() == sqrt(2) assert a.as_expr(x) == x assert b.as_expr() == sqrt(2) assert b.as_expr(x) == x a = AlgebraicNumber(sqrt(2), [2, 3]) b = AlgebraicNumber(sqrt(2), [2, 3], alias=y) p = a.as_poly() assert p == Poly(2 * p.gen + 3) assert a.as_poly(x) == Poly(2 * x + 3) assert b.as_poly() == Poly(2 * y + 3) assert a.as_expr() == 2 * sqrt(2) + 3 assert a.as_expr(x) == 2 * x + 3 assert b.as_expr() == 2 * sqrt(2) + 3 assert b.as_expr(x) == 2 * x + 3 a = AlgebraicNumber(sqrt(2)) b = to_number_field(sqrt(2)) assert a.args == b.args == (sqrt(2), Tuple()) b = AlgebraicNumber(sqrt(2), alias='alpha') assert b.args == (sqrt(2), Tuple(), Symbol('alpha')) a = AlgebraicNumber(sqrt(2), [1, 2, 3]) assert a.args == (sqrt(2), Tuple(1, 2, 3))
def test_DMP_functionality(): f = DMP([[1], [2, 0], [1, 0, 0]], ZZ) g = DMP([[1], [1, 0]], ZZ) h = DMP([[1]], ZZ) assert f.degree() == 2 assert f.degree_list() == (2, 2) assert f.total_degree() == 2 pytest.raises(TypeError, lambda: f.degree("spam")) assert f.LC() == ZZ(1) assert f.TC() == ZZ(0) assert f.nth(1, 1) == ZZ(2) pytest.raises(TypeError, lambda: f.nth(0, 'x')) assert f.max_norm() == 2 assert f.l1_norm() == 4 u = DMP([[2], [2, 0]], ZZ) assert f.diff(m=1, j=0) == u assert f.diff(m=1, j=1) == u pytest.raises(TypeError, lambda: f.diff(m='x', j=0)) pytest.raises(TypeError, lambda: f.diff(j="spam")) u = DMP([1, 2, 1], ZZ) v = DMP([1, 2, 1], ZZ) assert f.eval(a=1, j=0) == u assert f.eval(a=1, j=1) == v pytest.raises(TypeError, lambda: f.eval(a=1, j="spam")) assert f.eval(1).eval(1) == ZZ(4) assert f.cofactors(g) == (g, g, h) assert f.gcd(g) == g assert f.lcm(g) == f u = DMP([[QQ(45), QQ(30), QQ(5)]], QQ) v = DMP([[QQ(1), QQ(2, 3), QQ(1, 9)]], QQ) assert u.monic() == v assert (4 * f).content() == ZZ(4) assert (4 * f).primitive() == (ZZ(4), f) f = DMP([[1], [2], [3], [4], [5], [6]], ZZ) assert f.trunc(3) == DMP([[1], [-1], [], [1], [-1], []], ZZ) f = DMP(f_4, ZZ) assert f.sqf_part() == -f assert f.sqf_list() == (ZZ(-1), [(-f, 1)]) f = DMP([[-1], [], [], [5]], ZZ) g = DMP([[3, 1], [], []], ZZ) h = DMP([[45, 30, 5]], ZZ) r = DMP([675, 675, 225, 25], ZZ) assert f.subresultants(g) == [f, g, h] assert f.resultant(g) == r f = DMP([1, 3, 9, -13], ZZ) assert f.discriminant() == -11664 f = DMP([QQ(2), QQ(0)], QQ) g = DMP([QQ(1), QQ(0), QQ(-16)], QQ) s = DMP([QQ(1, 32), QQ(0)], QQ) t = DMP([QQ(-1, 16)], QQ) h = DMP([QQ(1)], QQ) assert f.half_gcdex(g) == (s, h) assert f.gcdex(g) == (s, t, h) assert f.invert(g) == s f = DMP([[1], [2], [3]], QQ) pytest.raises(ValueError, lambda: f.half_gcdex(f)) pytest.raises(ValueError, lambda: f.gcdex(f)) pytest.raises(ValueError, lambda: f.invert(f)) f = DMP([1, 0, 20, 0, 150, 0, 500, 0, 625, -2, 0, -10, 9], ZZ) g = DMP([1, 0, 0, -2, 9], ZZ) h = DMP([1, 0, 5, 0], ZZ) assert g.compose(h) == f assert f.decompose() == [g, h] f = DMP([[1], [2], [3]], QQ) pytest.raises(ValueError, lambda: f.decompose()) pytest.raises(ValueError, lambda: f.sturm()) pytest.raises(PolynomialError, lambda: f.all_coeffs()) pytest.raises(PolynomialError, lambda: f.all_monoms()) pytest.raises(PolynomialError, lambda: f.all_terms()) pytest.raises(ValueError, lambda: f.revert(1)) pytest.raises(ValueError, lambda: f.shift(1)) pytest.raises(ValueError, lambda: f.gff_list()) pytest.raises(PolynomialError, lambda: f.intervals()) pytest.raises(PolynomialError, lambda: f.refine_root(1, 2)) assert f.integrate() == DMP([[QQ(1, 3)], [QQ(1, 1)], [QQ(3, 1)], []], QQ) pytest.raises(TypeError, lambda: f.integrate(m="spam")) pytest.raises(TypeError, lambda: f.integrate(j="spam")) f = DMP([[-1], [], [], [5]], ZZ) g = DMP([[3, 1], [], []], QQ) r = DMP([675, 675, 225, 25], QQ) assert f.resultant(g) == r assert DMP([1, 2], QQ).resultant(DMP([3], ZZ)) == 3 assert f.is_cyclotomic is False