コード例 #1
0
def _eval_sum_hyper(f, i, a):
    """ Returns (res, cond). Sums from a to oo. """
    from diofant.functions import hyper
    from diofant.simplify import hyperexpand, hypersimp, fraction, simplify
    from diofant.polys.polytools import Poly, factor

    if a != 0:
        return _eval_sum_hyper(f.subs(i, i + a), i, 0)

    if f.subs(i, 0) == 0:
        if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
            return Integer(0), True
        return _eval_sum_hyper(f.subs(i, i + 1), i, 0)

    hs = hypersimp(f, i)
    if hs is None:
        return

    numer, denom = fraction(factor(hs))
    top, topl = numer.as_coeff_mul(i)
    bot, botl = denom.as_coeff_mul(i)
    ab = [top, bot]
    factors = [topl, botl]
    params = [[], []]
    for k in range(2):
        for fac in factors[k]:
            mul = 1
            if fac.is_Pow:
                mul = fac.exp
                fac = fac.base
                if not mul.is_Integer:
                    return
            p = Poly(fac, i)
            if p.degree() != 1:
                return
            m, n = p.all_coeffs()
            ab[k] *= m**mul
            params[k] += [n / m] * mul

    # Add "1" to numerator parameters, to account for implicit n! in
    # hypergeometric series.
    ap = params[0] + [1]
    bq = params[1]
    x = ab[0] / ab[1]
    h = hyper(ap, bq, x)

    e = h
    try:
        e = hyperexpand(h)
    except PolynomialError:
        pass
    if e is S.NaN and h.convergence_statement:
        e = h

    return f.subs(i, 0) * e, h.convergence_statement
コード例 #2
0
def _minimal_polynomial_sq(p, n, x):
    """
    Returns the minimal polynomial for the ``nth-root`` of a sum of surds
    or ``None`` if it fails.

    Parameters
    ==========

    p : sum of surds
    n : positive integer
    x : variable of the returned polynomial

    Examples
    ========

    >>> from diofant import sqrt
    >>> from diofant.abc import x

    >>> q = 1 + sqrt(2) + sqrt(3)
    >>> _minimal_polynomial_sq(q, 3, x)
    x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8
    """
    from diofant.simplify.simplify import _is_sum_surds

    p = sympify(p)
    n = sympify(n)
    r = _is_sum_surds(p)
    if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
        return
    pn = p**Rational(1, n)
    # eliminate the square roots
    p -= x
    while 1:
        p1 = _separate_sq(p)
        if p1 is p:
            p = p1.subs({x: x**n})
            break
        else:
            p = p1

    # _separate_sq eliminates field extensions in a minimal way, so that
    # if n = 1 then `p = constant*(minimal_polynomial(p))`
    # if n > 1 it contains the minimal polynomial as a factor.
    if n == 1:
        p1 = Poly(p)
        if p.coeff(x**p1.degree(x)) < 0:
            p = -p
        p = p.primitive()[1]
        return p
    # by construction `p` has root `pn`
    # the minimal polynomial is the factor vanishing in x = pn
    factors = factor_list(p)[1]

    result = _choose_factor(factors, x, pn)
    return result
コード例 #3
0
def root_factors(f, *gens, **args):
    """
    Returns all factors of a univariate polynomial.

    Examples
    ========

    >>> from diofant.abc import x, y

    >>> root_factors(x**2 - y, x)
    [x - sqrt(y), x + sqrt(y)]
    """
    args = dict(args)
    filter = args.pop('filter', None)

    F = Poly(f, *gens, **args)

    if not F.is_Poly:
        return [f]

    if F.is_multivariate:
        raise ValueError('multivariate polynomials are not supported')

    x = F.gens[0]

    zeros = roots(F, filter=filter)

    if not zeros:
        factors = [F]
    else:
        factors, N = [], 0

        for r, n in ordered(zeros.items()):
            factors, N = factors + [Poly(x - r, x)]*n, N + n

        if N < F.degree():
            G = reduce(lambda p, q: p*q, factors)
            factors.append(F.quo(G))

    if not isinstance(f, Poly):
        factors = [ f.as_expr() for f in factors ]

    return factors
コード例 #4
0
def roots(f, *gens, **flags):
    """
    Computes symbolic roots of a univariate polynomial.

    Given a univariate polynomial f with symbolic coefficients (or
    a list of the polynomial's coefficients), returns a dictionary
    with its roots and their multiplicities.

    Only roots expressible via radicals will be returned.  To get
    a complete set of roots use RootOf class or numerical methods
    instead. By default cubic and quartic formulas are used in
    the algorithm. To disable them because of unreadable output
    set ``cubics=False`` or ``quartics=False`` respectively. If cubic
    roots are real but are expressed in terms of complex numbers
    (casus irreducibilis [1]) the ``trig`` flag can be set to True to
    have the solutions returned in terms of cosine and inverse cosine
    functions.

    To get roots from a specific domain set the ``filter`` flag with
    one of the following specifiers: Z, Q, R, I, C. By default all
    roots are returned (this is equivalent to setting ``filter='C'``).

    By default a dictionary is returned giving a compact result in
    case of multiple roots.  However to get a list containing all
    those roots set the ``multiple`` flag to True; the list will
    have identical roots appearing next to each other in the result.
    (For a given Poly, the all_roots method will give the roots in
    sorted numerical order.)

    Examples
    ========

    >>> from diofant import Poly, roots, sqrt
    >>> from diofant.abc import x, y

    >>> roots(x**2 - 1, x) == {-1: 1, 1: 1}
    True

    >>> p = Poly(x**2-1, x)
    >>> roots(p) == {-1: 1, 1: 1}
    True

    >>> p = Poly(x**2-y, x, y)

    >>> roots(Poly(p, x)) == {-sqrt(y): 1, sqrt(y): 1}
    True

    >>> roots(x**2 - y, x) == {-sqrt(y): 1, sqrt(y): 1}
    True

    >>> roots([1, 0, -1]) == {-1: 1, 1: 1}
    True

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
    """
    from diofant.polys.polytools import to_rational_coeffs
    flags = dict(flags)

    auto = flags.pop('auto', True)
    cubics = flags.pop('cubics', True)
    trig = flags.pop('trig', False)
    quartics = flags.pop('quartics', True)
    quintics = flags.pop('quintics', False)
    multiple = flags.pop('multiple', False)
    filter = flags.pop('filter', None)
    predicate = flags.pop('predicate', None)

    if isinstance(f, list):
        if gens:
            raise ValueError('redundant generators given')

        x = Dummy('x')

        poly, i = {}, len(f) - 1

        for coeff in f:
            poly[i], i = sympify(coeff), i - 1

        f = Poly(poly, x, field=True)
    else:
        try:
            f = Poly(f, *gens, **flags)
            if f.length == 2 and f.degree() != 1:
                # check for foo**n factors in the constant
                n = f.degree()
                npow_bases = []
                expr = f.as_expr()
                con = expr.as_independent(*gens)[0]
                for p in Mul.make_args(con):
                    if p.is_Pow and not p.exp % n:
                        npow_bases.append(p.base**(p.exp/n))
                    else:
                        other.append(p)
                    if npow_bases:
                        b = Mul(*npow_bases)
                        B = Dummy()
                        d = roots(Poly(expr - con + B**n*Mul(*others), *gens,
                            **flags), *gens, **flags)
                        rv = {}
                        for k, v in d.items():
                            rv[k.subs(B, b)] = v
                        return rv

        except GeneratorsNeeded:
            if multiple:
                return []
            else:
                return {}

        if f.is_multivariate:
            raise PolynomialError('multivariate polynomials are not supported')

    def _update_dict(result, root, k):
        if root in result:
            result[root] += k
        else:
            result[root] = k

    def _try_decompose(f):
        """Find roots using functional decomposition. """
        factors, roots = f.decompose(), []

        for root in _try_heuristics(factors[0]):
            roots.append(root)

        for factor in factors[1:]:
            previous, roots = list(roots), []

            for root in previous:
                g = factor - Poly(root, f.gen)

                for root in _try_heuristics(g):
                    roots.append(root)

        return roots

    def _try_heuristics(f):
        """Find roots using formulas and some tricks. """
        if f.is_ground:
            return []
        if f.is_monomial:
            return [Integer(0)]*f.degree()

        if f.length() == 2:
            if f.degree() == 1:
                return list(map(cancel, roots_linear(f)))
            else:
                return roots_binomial(f)

        result = []

        for i in [-1, 1]:
            if not f.eval(i):
                f = f.quo(Poly(f.gen - i, f.gen))
                result.append(i)
                break

        n = f.degree()

        if n == 1:
            result += list(map(cancel, roots_linear(f)))
        elif n == 2:
            result += list(map(cancel, roots_quadratic(f)))
        elif f.is_cyclotomic:
            result += roots_cyclotomic(f)
        elif n == 3 and cubics:
            result += roots_cubic(f, trig=trig)
        elif n == 4 and quartics:
            result += roots_quartic(f)
        elif n == 5 and quintics:
            result += roots_quintic(f)

        return result

    (k,), f = f.terms_gcd()

    if not k:
        zeros = {}
    else:
        zeros = {Integer(0): k}

    coeff, f = preprocess_roots(f)

    if auto and f.get_domain().has_Ring:
        f = f.to_field()

    rescale_x = None
    translate_x = None

    result = {}

    if not f.is_ground:
        if not f.get_domain().is_Exact:
            for r in f.nroots():
                _update_dict(result, r, 1)
        elif f.degree() == 1:
            result[roots_linear(f)[0]] = 1
        elif f.length() == 2:
            roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
            for r in roots_fun(f):
                _update_dict(result, r, 1)
        else:
            _, factors = Poly(f.as_expr()).factor_list()
            if len(factors) == 1 and f.degree() == 2:
                for r in roots_quadratic(f):
                    _update_dict(result, r, 1)
            else:
                if len(factors) == 1 and factors[0][1] == 1:
                    if f.get_domain().is_EX:
                        res = to_rational_coeffs(f)
                        if res:
                            if res[0] is None:
                                translate_x, f = res[2:]
                            else:
                                rescale_x, f = res[1], res[-1]
                            result = roots(f)
                            if not result:
                                for root in _try_decompose(f):
                                    _update_dict(result, root, 1)
                    else:
                        for root in _try_decompose(f):
                            _update_dict(result, root, 1)
                else:
                    for factor, k in factors:
                        for r in _try_heuristics(Poly(factor, f.gen, field=True)):
                            _update_dict(result, r, k)

    if coeff is not S.One:
        _result, result, = result, {}

        for root, k in _result.items():
            result[coeff*root] = k

    result.update(zeros)

    if filter not in [None, 'C']:
        handlers = {
            'Z': lambda r: r.is_Integer,
            'Q': lambda r: r.is_Rational,
            'R': lambda r: r.is_extended_real,
            'I': lambda r: r.is_imaginary,
        }

        try:
            query = handlers[filter]
        except KeyError:
            raise ValueError("Invalid filter: %s" % filter)

        for zero in dict(result).keys():
            if not query(zero):
                del result[zero]

    if predicate is not None:
        for zero in dict(result).keys():
            if not predicate(zero):
                del result[zero]
    if rescale_x:
        result1 = {}
        for k, v in result.items():
            result1[k*rescale_x] = v
        result = result1
    if translate_x:
        result1 = {}
        for k, v in result.items():
            result1[k + translate_x] = v
        result = result1

    if not multiple:
        return result
    else:
        zeros = []

        for zero in ordered(result):
            zeros.extend([zero]*result[zero])

        return zeros