def test_li(): z = Symbol("z") zr = Symbol("z", extended_real=True) zp = Symbol("z", positive=True) zn = Symbol("z", negative=True) assert li(0) == 0 assert li(1) == -oo assert li(oo) == oo assert isinstance(li(z), li) assert diff(li(z), z) == 1/log(z) assert conjugate(li(z)) == li(conjugate(z)) assert conjugate(li(-zr)) == li(-zr) assert conjugate(li(-zp)) == conjugate(li(-zp)) assert conjugate(li(zn)) == conjugate(li(zn)) assert li(z).rewrite(Li) == Li(z) + li(2) assert li(z).rewrite(Ei) == Ei(log(z)) assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 - expint(1, -log(z))) assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))) assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))) assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))) assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))) assert li(z).rewrite(hyper) == (log(z)*hyper((1, 1), (2, 2), log(z)) - log(1/log(z))/2 + log(log(z))/2 + EulerGamma) assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 - meijerg(((), (1,)), ((0, 0), ()), -log(z)))
def test_expint(): """ Test various exponential integrals. """ from diofant import (expint, unpolarify, Symbol, Ci, Si, Shi, Chi, sin, cos, sinh, cosh, Ei) assert simplify( unpolarify( integrate(exp(-z * x) / x**y, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand( func=True))) == expint(y, z) assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand() == \ expint(1, z) assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand() == \ expint(2, z).rewrite(Ei).rewrite(expint) assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand() == \ expint(3, z).rewrite(Ei).rewrite(expint).expand() t = Symbol('t', positive=True) assert integrate(-cos(x) / x, (x, t, oo), meijerg=True).expand() == Ci(t) assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \ Si(t) - pi/2 assert integrate(sin(x) / x, (x, 0, z), meijerg=True) == Si(z) assert integrate(sinh(x) / x, (x, 0, z), meijerg=True) == Shi(z) assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \ I*pi - expint(1, x) assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \ == expint(1, x) - exp(-x)/x - I*pi u = Symbol('u', polar=True) assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \ == Ci(u) assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \ == Chi(u) assert integrate( expint(1, x), x, meijerg=True).rewrite(expint).expand() == x * expint(1, x) - exp(-x) assert integrate(expint(2, x), x, meijerg=True ).rewrite(expint).expand() == \ -x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2 assert simplify(unpolarify(integrate(expint(y, x), x, meijerg=True).rewrite(expint).expand(func=True))) == \ -expint(y + 1, x) assert integrate(Si(x), x, meijerg=True) == x * Si(x) + cos(x) assert integrate(Ci(u), u, meijerg=True).expand() == u * Ci(u) - sin(u) assert integrate(Shi(x), x, meijerg=True) == x * Shi(x) - cosh(x) assert integrate(Chi(u), u, meijerg=True).expand() == u * Chi(u) - sinh(u) assert integrate(Si(x) * exp(-x), (x, 0, oo), meijerg=True) == pi / 4 assert integrate(expint(1, x) * sin(x), (x, 0, oo), meijerg=True) == log(2) / 2
def test_specfun(): for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + '(n, x)' assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' assert octave_code(airyai(x)) == 'airy(0, x)' assert octave_code(airyaiprime(x)) == 'airy(1, x)' assert octave_code(airybi(x)) == 'airy(2, x)' assert octave_code(airybiprime(x)) == 'airy(3, x)' assert octave_code(uppergamma(n, x)) == "gammainc(x, n, 'upper')" assert octave_code(lowergamma(n, x)) == "gammainc(x, n, 'lower')" assert octave_code(jn( n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert octave_code(yn( n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2' assert octave_code(Chi(x)) == 'coshint(x)' assert octave_code(Ci(x)) == 'cosint(x)' assert octave_code(laguerre(n, x)) == 'laguerreL(n, x)' assert octave_code(li(x)) == 'logint(x)' assert octave_code(loggamma(x)) == 'gammaln(x)' assert octave_code(polygamma(n, x)) == 'psi(n, x)' assert octave_code(Shi(x)) == 'sinhint(x)' assert octave_code(Si(x)) == 'sinint(x)' assert octave_code(LambertW(x)) == 'lambertw(x)' assert octave_code(LambertW(x, n)) == 'lambertw(n, x)' assert octave_code(zeta(x)) == 'zeta(x)' assert octave_code(zeta( x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)'
def test_ei(): pos = Symbol('p', positive=True) neg = Symbol('n', negative=True) assert Ei(0) == -oo assert Ei(+oo) == oo assert Ei(-oo) == 0 assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi assert Ei(neg) == Ei(polar_lift(neg)) - I * pi assert tn_branch(Ei) assert mytd(Ei(x), exp(x) / x, x) assert mytn(Ei(x), Ei(x).rewrite(uppergamma), -uppergamma(0, x * polar_lift(-1)) - I * pi, x) assert mytn(Ei(x), Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi, x) assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x) assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x) assert mytn(Ei(x * polar_lift(I)), Ei(x * polar_lift(I)).rewrite(Si), Ci(x) + I * Si(x) + I * pi / 2, x) assert Ei(log(x)).rewrite(li) == li(x) assert Ei(2 * log(x)).rewrite(li) == li(x**2) assert Ei(x).series(x) == (EulerGamma + log(x) + x + x**2 / 4 + x**3 / 18 + x**4 / 96 + x**5 / 600 + O(x**6)) assert Ei(1 + x).series(x) == (Ei(1) + E * x + E * x**3 / 6 - E * x**4 / 12 + 3 * E * x**5 / 40 + O(x**6)) pytest.raises(ArgumentIndexError, lambda: Ei(x).fdiff(2))
def test_ei(): pos = Symbol('p', positive=True) neg = Symbol('n', negative=True) assert Ei(-pos) == Ei(polar_lift(-1) * pos) - I * pi assert Ei(neg) == Ei(polar_lift(neg)) - I * pi assert tn_branch(Ei) assert mytd(Ei(x), exp(x) / x, x) assert mytn(Ei(x), Ei(x).rewrite(uppergamma), -uppergamma(0, x * polar_lift(-1)) - I * pi, x) assert mytn(Ei(x), Ei(x).rewrite(expint), -expint(1, x * polar_lift(-1)) - I * pi, x) assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x) assert Ei(x * exp_polar(2 * I * pi)) == Ei(x) + 2 * I * pi assert Ei(x * exp_polar(-2 * I * pi)) == Ei(x) - 2 * I * pi assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x) assert mytn(Ei(x * polar_lift(I)), Ei(x * polar_lift(I)).rewrite(Si), Ci(x) + I * Si(x) + I * pi / 2, x) assert Ei(log(x)).rewrite(li) == li(x) assert Ei(2 * log(x)).rewrite(li) == li(x**2) assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \ x**3/18 + x**4/96 + x**5/600 + O(x**6)
def test_expint(): from diofant import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s) / s, (0, oo), True) assert inverse_mellin_transform(gamma(s) / s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma(s/2 + Rational(1, 2))/( 2*s*gamma(-s/2 + 1)), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) / (2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + Rational(1, 2))), (0, 1), True) assert inverse_mellin_transform( -4**s * sqrt(pi) * gamma(s) / (2 * s * gamma(-s + Rational(1, 2))), s, u, (0, 1)).expand() == Ci(sqrt(u)) # TODO LT of Si, Shi, Chi is a mess ... assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2) / 2 / s, 0, True) assert laplace_transform(expint(a, x), x, s) == \ (lerchphi(s*polar_lift(-1), 1, a), 0, Integer(0) < re(a)) assert laplace_transform(expint(1, x), x, s) == (log(s + 1) / s, 0, True) assert laplace_transform(expint(2, x), x, s) == \ ((s - log(s + 1))/s**2, 0, True) assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \ Heaviside(u)*Ci(u) assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \ Heaviside(x)*E1(x) assert inverse_laplace_transform((s - log(s + 1))/s**2, s, x).rewrite(expint).expand() == \ (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
def test_expint(): assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma), y**(x - 1) * uppergamma(1 - x, y), x) assert mytd(expint(x, y), -y**(x - 1) * meijerg([], [1, 1], [0, 0, 1 - x], [], y), x) assert mytd(expint(x, y), -expint(x - 1, y), y) assert mytn(expint(1, x), expint(1, x).rewrite(Ei), -Ei(x * polar_lift(-1)) + I * pi, x) assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \ + 24*exp(-x)/x**4 + 24*exp(-x)/x**5 assert expint(-Rational(3, 2), x) == \ exp(-x)/x + 3*exp(-x)/(2*x**2) - 3*sqrt(pi)*erf(sqrt(x))/(4*x**Rational(5, 2)) \ + 3*sqrt(pi)/(4*x**Rational(5, 2)) assert tn_branch(expint, 1) assert tn_branch(expint, 2) assert tn_branch(expint, 3) assert tn_branch(expint, 1.7) assert tn_branch(expint, pi) assert expint(y, x*exp_polar(2*I*pi)) == \ x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(y, x*exp_polar(-2*I*pi)) == \ x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(2, x * exp_polar(2 * I * pi)) == 2 * I * pi * x + expint(2, x) assert expint(2, x * exp_polar(-2 * I * pi)) == -2 * I * pi * x + expint(2, x) assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x) assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x) assert mytn(E1(polar_lift(I) * x), E1(polar_lift(I) * x).rewrite(Si), -Ci(x) + I * Si(x) - I * pi / 2, x) assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint), -x * E1(x) + exp(-x), x) assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint), x**2 * E1(x) / 2 + (1 - x) * exp(-x) / 2, x) assert expint(Rational(3, 2), z).nseries(z, n=10) == \ 2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \ 2*sqrt(pi)*sqrt(z) + O(z**6) assert E1(z).series(z) == -EulerGamma - log(z) + z - \ z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6) assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \ z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6) - z**4/24 + \ z**5/240 + O(z**6)
def test_cosine_transform(): from diofant import Si, Ci t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform(f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1 / sqrt(t), t, w) == 1 / sqrt(w) assert inverse_cosine_transform(1 / sqrt(w), w, t) == 1 / sqrt(t) assert cosine_transform(1 / (a**2 + t**2), t, w) == sqrt(2) * sqrt(pi) * exp(-a * w) / (2 * a) assert cosine_transform( t**(-a), t, w) == 2**(-a + Rational(1, 2)) * w**(a - 1) * gamma( (-a + 1) / 2) / gamma(a / 2) assert inverse_cosine_transform( 2**(-a + Rational(1, 2)) * w**(a - 1) * gamma(-a / 2 + Rational(1, 2)) / gamma(a / 2), w, t) == t**(-a) assert cosine_transform(exp(-a * t), t, w) == sqrt(2) * a / (sqrt(pi) * (a**2 + w**2)) assert inverse_cosine_transform( sqrt(2) * a / (sqrt(pi) * (a**2 + w**2)), w, t) == exp(-a * t) assert cosine_transform(exp(-a * sqrt(t)) * cos(a * sqrt(t)), t, w) == a * exp(-a**2 / (2 * w)) / (2 * w**Rational(3, 2)) assert cosine_transform( 1 / (a + t), t, w) == sqrt(2) * ((-2 * Si(a * w) + pi) * sin(a * w) / 2 - cos(a * w) * Ci(a * w)) / sqrt(pi) assert inverse_cosine_transform( sqrt(2) * meijerg(((Rational(1, 2), 0), ()), ((Rational(1, 2), 0, 0), (Rational(1, 2), )), a**2 * w**2 / 4) / (2 * pi), w, t) == 1 / (a + t) assert cosine_transform(1 / sqrt(a**2 + t**2), t, w) == sqrt(2) * meijerg( ((Rational(1, 2), ), ()), ((0, 0), (Rational(1, 2), )), a**2 * w**2 / 4) / (2 * sqrt(pi)) assert inverse_cosine_transform( sqrt(2) * meijerg( ((Rational(1, 2), ), ()), ((0, 0), (Rational(1, 2), )), a**2 * w**2 / 4) / (2 * sqrt(pi)), w, t) == 1 / (a * sqrt(1 + t**2 / a**2))
def test_meijerg_lookup(): assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \ z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z) assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \ exp(z)*uppergamma(0, z) assert can_do_meijer([a], [], [b, a + 1], []) assert can_do_meijer([a], [], [b + 2, a], []) assert can_do_meijer([a], [], [b - 2, a], []) assert hyperexpand(meijerg([a], [], [a, a, a - Rational(1, 2)], [], z)) == \ -sqrt(pi)*z**(a - Rational(1, 2))*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2) - 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \ hyperexpand(meijerg([a], [], [a, a - Rational(1, 2), a], [], z)) == \ hyperexpand(meijerg([a], [], [a - Rational(1, 2), a, a], [], z)) assert can_do_meijer([a - 1], [], [a + 2, a - Rational(3, 2), a + 1], [])
def test_ci(): m1 = exp_polar(I * pi) m1_ = exp_polar(-I * pi) pI = exp_polar(I * pi / 2) mI = exp_polar(-I * pi / 2) assert Ci(m1 * x) == Ci(x) + I * pi assert Ci(m1_ * x) == Ci(x) - I * pi assert Ci(pI * x) == Chi(x) + I * pi / 2 assert Ci(mI * x) == Chi(x) - I * pi / 2 assert Chi(m1 * x) == Chi(x) + I * pi assert Chi(m1_ * x) == Chi(x) - I * pi assert Chi(pI * x) == Ci(x) + I * pi / 2 assert Chi(mI * x) == Ci(x) - I * pi / 2 assert Ci(exp_polar(2 * I * pi) * x) == Ci(x) + 2 * I * pi assert Chi(exp_polar(-2 * I * pi) * x) == Chi(x) - 2 * I * pi assert Chi(exp_polar(2 * I * pi) * x) == Chi(x) + 2 * I * pi assert Ci(exp_polar(-2 * I * pi) * x) == Ci(x) - 2 * I * pi assert Ci(oo) == 0 assert Ci(-oo) == I * pi assert Chi(oo) == oo assert Chi(-oo) == oo assert mytd(Ci(x), cos(x) / x, x) assert mytd(Chi(x), cosh(x) / x, x) assert mytn( Ci(x), Ci(x).rewrite(Ei), Ei(x * exp_polar(-I * pi / 2)) / 2 + Ei(x * exp_polar(I * pi / 2)) / 2, x) assert mytn(Chi(x), Chi(x).rewrite(Ei), Ei(x) / 2 + Ei(x * exp_polar(I * pi)) / 2 - I * pi / 2, x) assert tn_arg(Ci) assert tn_arg(Chi) assert Ci(x).nseries(x, n=4) == \ EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**6) assert Chi(x).nseries(x, n=4) == \ EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**6) assert limit(log(x) - Ci(2 * x), x, 0) == -log(2) - EulerGamma
def test_limit_bug(): z = Symbol('z', nonzero=True) assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \ (log(z**2) + 2*EulerGamma + 2*log(pi))/(2*z) - \ (-log(pi*z) + log(pi**2*z**2)/2 + Ci(pi**2*z))/z + log(pi)/z