def test_ineq_avoid_wild_symbol_flip(): p = Wild('p') assert Gt(x, p) == Gt(x, p, evaluate=False) assert (x < p) == Lt(x, p, evaluate=False) # issue sympy/sympy#7951 # Previously failed as 'p > x': e = Lt(x, y).subs({y: p}) assert e == Lt(x, p, evaluate=False) # Previously failed as 'p <= x': e = Ge(x, p).doit() assert e == Ge(x, p, evaluate=False)
def test_sympyissue_8444(): x = Symbol('x', extended_real=True) assert (x <= oo) == (x >= -oo) == true x = Symbol('x', real=True) assert x >= floor(x) assert (x < floor(x)) is false assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False) assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False) assert x <= ceiling(x) assert (x > ceiling(x)) is false assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False) assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False) i = Symbol('i', integer=True) assert (i > floor(i)) is false assert (i < ceiling(i)) is false
def test_infinity(): # issue sympy/sympy#8449 p = Symbol('p', nonnegative=True) assert Lt(-oo, p) assert Ge(-oo, p) is false assert Gt(oo, -p) assert Le(oo, -p) is false
def test_doit(): p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('np', nonpositive=True) nn = Symbol('nn', nonnegative=True) assert Gt(p, 0).doit() is true assert Gt(p, 1).doit() == Gt(p, 1) assert Ge(p, 0).doit() is true assert Le(p, 0).doit() is false assert Lt(n, 0).doit() is true assert Le(np, 0).doit() is true assert Gt(nn, 0).doit() == Gt(nn, 0) assert Lt(nn, 0).doit() is false assert Eq(x, 0).doit() == Eq(x, 0)
def test_python_relational(): assert python(Eq(x, y)) == 'e = Eq(x, y)' assert python(Ge(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x >= y" assert python(Le(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x <= y" assert python(Gt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x > y" assert python(Lt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x < y" assert python( Ne(x / (y + 1), y**2)) in ['e = Ne(x/(1 + y), y**2)', 'e = Ne(x/(y + 1), y**2)']
def test_evaluate(): assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)' assert Eq(x, x, evaluate=False).doit() == true assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)' assert Ne(x, x, evaluate=False).doit() == false assert str(Ge(x, x, evaluate=False)) == 'x >= x' assert str(Le(x, x, evaluate=False)) == 'x <= x' assert str(Gt(x, x, evaluate=False)) == 'x > x' assert str(Lt(x, x, evaluate=False)) == 'x < x'
def test_inequalities_symbol_name_same(): """Using the operator and functional forms should give same results.""" # We test all combinations from a set A = (x, y, Integer(0), Rational(1, 3), pi, oo, -oo) for a in A: for b in A: assert Gt(a, b) == (a > b) assert Lt(a, b) == (a < b) assert Ge(a, b) == (a >= b) assert Le(a, b) == (a <= b) for b in (y, Integer(0), Rational(1, 3), pi, oo, -oo): assert Gt(x, b, evaluate=False) == (x > b) assert Lt(x, b, evaluate=False) == (x < b) assert Ge(x, b, evaluate=False) == (x >= b) assert Le(x, b, evaluate=False) == (x <= b) for b in (y, Integer(0), Rational(1, 3), pi, oo, -oo): assert Gt(b, x, evaluate=False) == (b > x) assert Lt(b, x, evaluate=False) == (b < x) assert Ge(b, x, evaluate=False) == (b >= x) assert Le(b, x, evaluate=False) == (b <= x)
def test_inequalities_symbol_name_same_complex(): """Using the operator and functional forms should give same results. With complex non-real numbers, both should raise errors. """ for a in (x, Integer(0), Rational(1, 3), pi, oo): pytest.raises(TypeError, lambda: Gt(a, I)) pytest.raises(TypeError, lambda: a > I) pytest.raises(TypeError, lambda: Lt(a, I)) pytest.raises(TypeError, lambda: a < I) pytest.raises(TypeError, lambda: Ge(a, I)) pytest.raises(TypeError, lambda: a >= I) pytest.raises(TypeError, lambda: Le(a, I)) pytest.raises(TypeError, lambda: a <= I)
def test_reduce_poly_inequalities_complex_relational(): assert reduce_rational_inequalities([[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0) assert reduce_rational_inequalities([[Le(x**2, 0)]], x, relational=True) == Eq(x, 0) assert reduce_rational_inequalities([[Lt(x**2, 0)]], x, relational=True) is false assert reduce_rational_inequalities([[Ge(x**2, 0)]], x, relational=True) == And( Lt(-oo, x), Lt(x, oo)) assert reduce_rational_inequalities( [[Gt(x**2, 0)]], x, relational=True) == \ And(Or(And(Lt(-oo, x), Lt(x, 0)), And(Lt(0, x), Lt(x, oo)))) assert reduce_rational_inequalities( [[Ne(x**2, 0)]], x, relational=True) == \ And(Or(And(Lt(-oo, x), Lt(x, 0)), And(Lt(0, x), Lt(x, oo)))) for one in (Integer(1), Float(1.0)): inf = one * oo assert reduce_rational_inequalities( [[Eq(x**2, one)]], x, relational=True) == \ Or(Eq(x, -one), Eq(x, one)) assert reduce_rational_inequalities( [[Le(x**2, one)]], x, relational=True) == \ And(And(Le(-one, x), Le(x, one))) assert reduce_rational_inequalities( [[Lt(x**2, one)]], x, relational=True) == \ And(And(Lt(-one, x), Lt(x, one))) assert reduce_rational_inequalities( [[Ge(x**2, one)]], x, relational=True) == \ And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x)))) assert reduce_rational_inequalities( [[Gt(x**2, one)]], x, relational=True) == \ And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf)))) assert reduce_rational_inequalities( [[Ne(x**2, one)]], x, relational=True) == \ Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(-one, x), Lt(x, one)), And(Lt(one, x), Lt(x, inf)))
def test_bool(): assert Eq(0, 0) is true assert Eq(1, 0) is false assert Ne(0, 0) is false assert Ne(1, 0) is true assert Lt(0, 1) is true assert Lt(1, 0) is false assert Le(0, 1) is true assert Le(1, 0) is false assert Le(0, 0) is true assert Gt(1, 0) is true assert Gt(0, 1) is false assert Ge(1, 0) is true assert Ge(0, 1) is false assert Ge(1, 1) is true assert Eq(I, 2) is false assert Ne(I, 2) is true pytest.raises(TypeError, lambda: Gt(I, 2)) pytest.raises(TypeError, lambda: Ge(I, 2)) pytest.raises(TypeError, lambda: Lt(I, 2)) pytest.raises(TypeError, lambda: Le(I, 2)) a = Float('.000000000000000000001') b = Float('.0000000000000000000001') assert Eq(pi + a, pi + b) is false
def test_wrappers(): e = x + x**2 res = Relational(y, e, '==') assert Rel(y, x + x**2, '==') == res assert Eq(y, x + x**2) == res res = Relational(y, e, '<') assert Lt(y, x + x**2) == res res = Relational(y, e, '<=') assert Le(y, x + x**2) == res res = Relational(y, e, '>') assert Gt(y, x + x**2) == res res = Relational(y, e, '>=') assert Ge(y, x + x**2) == res res = Relational(y, e, '!=') assert Ne(y, x + x**2) == res
def test_reduce_poly_inequalities_real_interval(): assert reduce_rational_inequalities( [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0) assert reduce_rational_inequalities( [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0) assert reduce_rational_inequalities( [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet assert reduce_rational_inequalities( [[Ge(x**2, 0)]], x, relational=False) == \ S.Reals if x.is_extended_real else Interval(-oo, oo) assert reduce_rational_inequalities( [[Gt(x**2, 0)]], x, relational=False) == \ FiniteSet(0).complement(S.Reals) assert reduce_rational_inequalities( [[Ne(x**2, 0)]], x, relational=False) == \ FiniteSet(0).complement(S.Reals) assert reduce_rational_inequalities( [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1) assert reduce_rational_inequalities( [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1) assert reduce_rational_inequalities( [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True) assert reduce_rational_inequalities( [[Ge(x**2, 1)]], x, relational=False) == \ Union(Interval(-oo, -1, True), Interval(1, oo, False, True)) assert reduce_rational_inequalities( [[Gt(x**2, 1)]], x, relational=False) == \ Interval(-1, 1).complement(S.Reals) assert reduce_rational_inequalities( [[Ne(x**2, 1)]], x, relational=False) == \ FiniteSet(-1, 1).complement(S.Reals) assert reduce_rational_inequalities([[Eq( x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf() assert reduce_rational_inequalities( [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0) assert reduce_rational_inequalities([[Lt( x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True) assert reduce_rational_inequalities( [[Ge(x**2, 1.0)]], x, relational=False) == \ Union(Interval(-inf, -1.0, True), Interval(1.0, inf, False, True)) assert reduce_rational_inequalities( [[Gt(x**2, 1.0)]], x, relational=False) == \ Union(Interval(-inf, -1.0, True, True), Interval(1.0, inf, True, True)) assert reduce_rational_inequalities([[Ne( x**2, 1.0)]], x, relational=False) == \ FiniteSet(-1.0, 1.0).complement(S.Reals) s = sqrt(2) assert reduce_rational_inequalities([[Lt( x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge( x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1) assert reduce_rational_inequalities( [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False)) assert reduce_rational_inequalities( [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False)) assert reduce_rational_inequalities( [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True)) assert reduce_rational_inequalities( [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True)) assert reduce_rational_inequalities( [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True), Interval(1, s, True, True)) # issue sympy/sympy#10237 assert reduce_rational_inequalities( [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo, False, True) assert reduce_rational_inequalities([[Eq((x + 1)/(x**2 - 1), 0)]], x) is S.false
def test_Relational(): assert mathematica_code(Eq(x, y)) == 'x == y' assert mathematica_code(Ne(x, y / (1 + y**2))) == 'x != (y/(y^2 + 1))' assert mathematica_code(Le(0, x**2)) == '0 <= x^2' assert mathematica_code(Gt(pi, 3, evaluate=False)) == 'Pi > 3'
def test_sympyissue_8449(): p = Symbol('p', nonnegative=True) assert Lt(-oo, p) assert Ge(-oo, p) is false assert Gt(oo, -p) assert Le(oo, -p) is false
def test_sympyissue_10258(): p = Piecewise((1, x < 0), (0, True)) assert (p > 0) == Gt(p, 0, evaluate=False)
def test_new_relational(): assert Eq(x, 0) == Relational(x, 0) # None ==> Equality assert Eq(x, 0) == Relational(x, 0, '==') assert Eq(x, 0) == Relational(x, 0, 'eq') assert Eq(x, 0) == Equality(x, 0) assert Eq(x, -1) == Relational(x, -1) # None ==> Equality assert Eq(x, -1) == Relational(x, -1, '==') assert Eq(x, -1) == Relational(x, -1, 'eq') assert Eq(x, -1) == Equality(x, -1) assert Eq(x, 0) != Relational(x, 1) # None ==> Equality assert Eq(x, 0) != Relational(x, 1, '==') assert Eq(x, 0) != Relational(x, 1, 'eq') assert Eq(x, 0) != Equality(x, 1) assert Eq(x, -1) != Relational(x, 1) # None ==> Equality assert Eq(x, -1) != Relational(x, 1, '==') assert Eq(x, -1) != Relational(x, 1, 'eq') assert Eq(x, -1) != Equality(x, 1) assert Ne(x, 0) == Relational(x, 0, '!=') assert Ne(x, 0) == Relational(x, 0, '<>') assert Ne(x, 0) == Relational(x, 0, 'ne') assert Ne(x, 0) == Unequality(x, 0) assert Ne(x, 0) != Relational(x, 1, '!=') assert Ne(x, 0) != Relational(x, 1, '<>') assert Ne(x, 0) != Relational(x, 1, 'ne') assert Ne(x, 0) != Unequality(x, 1) assert Ge(x, 0) == Relational(x, 0, '>=') assert Ge(x, 0) == Relational(x, 0, 'ge') assert Ge(x, 0) == GreaterThan(x, 0) assert Ge(x, 1) != Relational(x, 0, '>=') assert Ge(x, 1) != Relational(x, 0, 'ge') assert Ge(x, 1) != GreaterThan(x, 0) assert (x >= 1) == Relational(x, 1, '>=') assert (x >= 1) == Relational(x, 1, 'ge') assert (x >= 1) == GreaterThan(x, 1) assert (x >= 0) != Relational(x, 1, '>=') assert (x >= 0) != Relational(x, 1, 'ge') assert (x >= 0) != GreaterThan(x, 1) assert Le(x, 0) == Relational(x, 0, '<=') assert Le(x, 0) == Relational(x, 0, 'le') assert Le(x, 0) == LessThan(x, 0) assert Le(x, 1) != Relational(x, 0, '<=') assert Le(x, 1) != Relational(x, 0, 'le') assert Le(x, 1) != LessThan(x, 0) assert (x <= 1) == Relational(x, 1, '<=') assert (x <= 1) == Relational(x, 1, 'le') assert (x <= 1) == LessThan(x, 1) assert (x <= 0) != Relational(x, 1, '<=') assert (x <= 0) != Relational(x, 1, 'le') assert (x <= 0) != LessThan(x, 1) assert Gt(x, 0) == Relational(x, 0, '>') assert Gt(x, 0) == Relational(x, 0, 'gt') assert Gt(x, 0) == StrictGreaterThan(x, 0) assert Gt(x, 1) != Relational(x, 0, '>') assert Gt(x, 1) != Relational(x, 0, 'gt') assert Gt(x, 1) != StrictGreaterThan(x, 0) assert (x > 1) == Relational(x, 1, '>') assert (x > 1) == Relational(x, 1, 'gt') assert (x > 1) == StrictGreaterThan(x, 1) assert (x > 0) != Relational(x, 1, '>') assert (x > 0) != Relational(x, 1, 'gt') assert (x > 0) != StrictGreaterThan(x, 1) assert Lt(x, 0) == Relational(x, 0, '<') assert Lt(x, 0) == Relational(x, 0, 'lt') assert Lt(x, 0) == StrictLessThan(x, 0) assert Lt(x, 1) != Relational(x, 0, '<') assert Lt(x, 1) != Relational(x, 0, 'lt') assert Lt(x, 1) != StrictLessThan(x, 0) assert (x < 1) == Relational(x, 1, '<') assert (x < 1) == Relational(x, 1, 'lt') assert (x < 1) == StrictLessThan(x, 1) assert (x < 0) != Relational(x, 1, '<') assert (x < 0) != Relational(x, 1, 'lt') assert (x < 0) != StrictLessThan(x, 1) # finally, some fuzz testing for i in range(100): while 1: strtype, length = (chr, 65535) if random.randint(0, 1) else (chr, 255) relation_type = strtype(random.randint(0, length)) if random.randint(0, 1): relation_type += strtype(random.randint(0, length)) if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge', '<=', 'le', '>', 'gt', '<', 'lt', ':='): break pytest.raises(ValueError, lambda: Relational(x, 1, relation_type)) assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '==')) assert all( Relational(x, 0, op).rel_op == '!=' for op in ('ne', '<>', '!=')) assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>')) assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<')) assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>=')) assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<='))
def test_rich_cmp(): assert (x < y) == Lt(x, y) assert (x <= y) == Le(x, y) assert (x > y) == Gt(x, y) assert (x >= y) == Ge(x, y)