コード例 #1
0
ファイル: test_domains.py プロジェクト: X3nOph0N/diofant
def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == F3
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ.inject(x)) == F3.inject(x)
    assert unify(F3, ZZ.inject(x).field) == F3.inject(x).field
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == F3
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ.inject(x)) == ZZ.inject(x)
    assert unify(ZZ, ZZ.inject(x).field) == ZZ.inject(x).field
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ.inject(x)) == QQ.inject(x)
    assert unify(QQ, ZZ.inject(x).field) == QQ.inject(x).field
    assert unify(QQ, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ.inject(x)) == RR.inject(x)
    assert unify(RR, ZZ.inject(x).field) == RR.inject(x).field
    assert unify(RR, EX) == EX

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ.inject(x)) == CC.inject(x)
    assert unify(CC, ZZ.inject(x).field) == CC.inject(x).field
    assert unify(CC, EX) == EX

    CC2 = ComplexField(prec=20)
    assert unify(CC, CC2) == unify(CC2, CC) == ComplexField(prec=CC.precision,
                                                            tol=CC2.tolerance)
    RR2 = RealField(prec=20)
    assert unify(RR, RR2) == unify(RR2, RR) == RealField(prec=RR.precision,
                                                         tol=RR2.tolerance)

    assert unify(ZZ.inject(x), F3) == F3.inject(x)
    assert unify(ZZ.inject(x), ZZ) == ZZ.inject(x)
    assert unify(ZZ.inject(x), QQ) == QQ.inject(x)
    assert unify(ZZ.inject(x), ALG) == ALG.inject(x)
    assert unify(ZZ.inject(x), RR) == RR.inject(x)
    assert unify(ZZ.inject(x), CC) == CC.inject(x)
    assert unify(ZZ.inject(x), ZZ.inject(x)) == ZZ.inject(x)
    assert unify(ZZ.inject(x), ZZ.inject(x).field) == ZZ.inject(x).field
    assert unify(ZZ.inject(x), EX) == EX

    assert unify(ZZ.inject(x).field, F3) == F3.inject(x).field
    assert unify(ZZ.inject(x).field, ZZ) == ZZ.inject(x).field
    assert unify(ZZ.inject(x).field, QQ) == QQ.inject(x).field
    assert unify(ZZ.inject(x).field, ALG) == ALG.inject(x).field
    assert unify(ZZ.inject(x).field, RR) == RR.inject(x).field
    assert unify(ZZ.inject(x).field, CC) == CC.inject(x).field
    assert unify(ZZ.inject(x).field, ZZ.inject(x)) == ZZ.inject(x).field
    assert unify(ZZ.inject(x).field, ZZ.inject(x).field) == ZZ.inject(x).field
    assert unify(ZZ.inject(x).field, EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ.inject(x)) == EX
    assert unify(EX, ZZ.inject(x).field) == EX
    assert unify(EX, EX) == EX
コード例 #2
0
def test_construct_domain():
    assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
    assert construct_domain([1, 2, 3],
                            field=True) == (QQ, [QQ(1), QQ(2),
                                                 QQ(3)])

    assert construct_domain([Integer(1), Integer(2),
                             Integer(3)]) == (ZZ, [ZZ(1), ZZ(2),
                                                   ZZ(3)])
    assert construct_domain(
        [Integer(1), Integer(2), Integer(3)],
        field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])

    assert construct_domain([Rational(1, 2),
                             Integer(2)]) == (QQ, [QQ(1, 2), QQ(2)])
    assert construct_domain([3.14, 1, Rational(1, 2)
                             ]) == (RR, [RR(3.14), RR(1.0),
                                         RR(0.5)])

    assert construct_domain([3.14, sqrt(2)],
                            extension=False) == (EX, [EX(3.14),
                                                      EX(sqrt(2))])
    assert construct_domain([3.14, sqrt(2)]) == (EX, [EX(3.14), EX(sqrt(2))])
    assert construct_domain([sqrt(2), 3.14]) == (EX, [EX(sqrt(2)), EX(3.14)])

    assert construct_domain([1, sqrt(2)],
                            extension=False) == (EX, [EX(1),
                                                      EX(sqrt(2))])

    assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
    assert construct_domain([x, sqrt(x), sqrt(y)
                             ]) == (EX, [EX(x),
                                         EX(sqrt(x)),
                                         EX(sqrt(y))])

    alg = QQ.algebraic_field(sqrt(2))

    assert (construct_domain(
        [7, Rational(1, 2),
         sqrt(2)]) == (alg, [alg([7]),
                             alg([Rational(1, 2)]),
                             alg([1, 0])]))

    alg = QQ.algebraic_field(sqrt(2) + sqrt(3))

    assert (construct_domain([7, sqrt(2), sqrt(3)]) == (alg, [
        alg([7]), alg.from_expr(sqrt(2)),
        alg.from_expr(sqrt(3))
    ]))

    dom = ZZ.inject(x)

    assert construct_domain([2 * x, 3]) == (dom, [dom(2 * x), dom(3)])

    dom = ZZ.inject(x, y)

    assert construct_domain([2 * x, 3 * y]) == (dom, [dom(2 * x), dom(3 * y)])

    dom = QQ.inject(x)

    assert construct_domain([x / 2, 3]) == (dom, [dom(x / 2), dom(3)])

    dom = QQ.inject(x, y)

    assert construct_domain([x / 2, 3 * y]) == (dom, [dom(x / 2), dom(3 * y)])

    dom = RR.inject(x)

    assert construct_domain([x / 2, 3.5]) == (dom, [dom(x / 2), dom(3.5)])

    dom = RR.inject(x, y)

    assert construct_domain([x / 2,
                             3.5 * y]) == (dom, [dom(x / 2),
                                                 dom(3.5 * y)])

    dom = ZZ.inject(x).field

    assert construct_domain([2 / x, 3]) == (dom, [dom(2 / x), dom(3)])

    dom = ZZ.inject(x, y).field

    assert construct_domain([2 / x, 3 * y]) == (dom, [dom(2 / x), dom(3 * y)])

    dom = RR.inject(x).field

    assert construct_domain([2 / x, 3.5]) == (dom, [dom(2 / x), dom(3.5)])

    dom = RR.inject(x, y).field

    assert construct_domain([2 / x,
                             3.5 * y]) == (dom, [dom(2 / x),
                                                 dom(3.5 * y)])

    assert construct_domain(2) == (ZZ, ZZ(2))
    assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))

    assert construct_domain({}) == (ZZ, {})

    assert construct_domain([-x * y + x * (y + 42) - 42 * x
                             ]) == (EX, [EX(-x * y + x * (y + 42) - 42 * x)])
コード例 #3
0
ファイル: test_domains.py プロジェクト: X3nOph0N/diofant
def test_Domain__contains__():
    assert (0 in EX) is True
    assert (0 in ZZ) is True
    assert (0 in QQ) is True
    assert (0 in RR) is True
    assert (0 in CC) is True
    assert (0 in ALG) is True
    assert (0 in ZZ.inject(x, y)) is True
    assert (0 in QQ.inject(x, y)) is True
    assert (0 in RR.inject(x, y)) is True

    assert (-7 in EX) is True
    assert (-7 in ZZ) is True
    assert (-7 in QQ) is True
    assert (-7 in RR) is True
    assert (-7 in CC) is True
    assert (-7 in ALG) is True
    assert (-7 in ZZ.inject(x, y)) is True
    assert (-7 in QQ.inject(x, y)) is True
    assert (-7 in RR.inject(x, y)) is True

    assert (17 in EX) is True
    assert (17 in ZZ) is True
    assert (17 in QQ) is True
    assert (17 in RR) is True
    assert (17 in CC) is True
    assert (17 in ALG) is True
    assert (17 in ZZ.inject(x, y)) is True
    assert (17 in QQ.inject(x, y)) is True
    assert (17 in RR.inject(x, y)) is True

    assert (-Rational(1, 7) in EX) is True
    assert (-Rational(1, 7) in ZZ) is False
    assert (-Rational(1, 7) in QQ) is True
    assert (-Rational(1, 7) in RR) is True
    assert (-Rational(1, 7) in CC) is True
    assert (-Rational(1, 7) in ALG) is True
    assert (-Rational(1, 7) in ZZ.inject(x, y)) is False
    assert (-Rational(1, 7) in QQ.inject(x, y)) is True
    assert (-Rational(1, 7) in RR.inject(x, y)) is True

    assert (Rational(3, 5) in EX) is True
    assert (Rational(3, 5) in ZZ) is False
    assert (Rational(3, 5) in QQ) is True
    assert (Rational(3, 5) in RR) is True
    assert (Rational(3, 5) in CC) is True
    assert (Rational(3, 5) in ALG) is True
    assert (Rational(3, 5) in ZZ.inject(x, y)) is False
    assert (Rational(3, 5) in QQ.inject(x, y)) is True
    assert (Rational(3, 5) in RR.inject(x, y)) is True

    assert (3.0 in EX) is True
    assert (3.0 in ZZ) is True
    assert (3.0 in QQ) is True
    assert (3.0 in RR) is True
    assert (3.0 in CC) is True
    assert (3.0 in ALG) is True
    assert (3.0 in ZZ.inject(x, y)) is True
    assert (3.0 in QQ.inject(x, y)) is True
    assert (3.0 in RR.inject(x, y)) is True

    assert (3.14 in EX) is True
    assert (3.14 in ZZ) is False
    assert (3.14 in QQ) is True
    assert (3.14 in RR) is True
    assert (3.14 in CC) is True
    assert (3.14 in ALG) is True
    assert (3.14 in ZZ.inject(x, y)) is False
    assert (3.14 in QQ.inject(x, y)) is True
    assert (3.14 in RR.inject(x, y)) is True

    assert (oo in EX) is True
    assert (oo in ZZ) is False
    assert (oo in QQ) is False
    assert (oo in RR) is True
    assert (oo in CC) is True
    assert (oo in ALG) is False
    assert (oo in ZZ.inject(x, y)) is False
    assert (oo in QQ.inject(x, y)) is False
    assert (oo in RR.inject(x, y)) is True

    assert (-oo in EX) is True
    assert (-oo in ZZ) is False
    assert (-oo in QQ) is False
    assert (-oo in RR) is True
    assert (-oo in CC) is True
    assert (-oo in ALG) is False
    assert (-oo in ZZ.inject(x, y)) is False
    assert (-oo in QQ.inject(x, y)) is False
    assert (-oo in RR.inject(x, y)) is True

    assert (sqrt(7) in EX) is True
    assert (sqrt(7) in ZZ) is False
    assert (sqrt(7) in QQ) is False
    assert (sqrt(7) in RR) is True
    assert (sqrt(7) in CC) is True
    assert (sqrt(7) in ALG) is False
    assert (sqrt(7) in ZZ.inject(x, y)) is False
    assert (sqrt(7) in QQ.inject(x, y)) is False
    assert (sqrt(7) in RR.inject(x, y)) is True

    assert (2 * sqrt(3) + 1 in EX) is True
    assert (2 * sqrt(3) + 1 in ZZ) is False
    assert (2 * sqrt(3) + 1 in QQ) is False
    assert (2 * sqrt(3) + 1 in RR) is True
    assert (2 * sqrt(3) + 1 in CC) is True
    assert (2 * sqrt(3) + 1 in ALG) is True
    assert (2 * sqrt(3) + 1 in ZZ.inject(x, y)) is False
    assert (2 * sqrt(3) + 1 in QQ.inject(x, y)) is False
    assert (2 * sqrt(3) + 1 in RR.inject(x, y)) is True

    assert (sin(1) in EX) is True
    assert (sin(1) in ZZ) is False
    assert (sin(1) in QQ) is False
    assert (sin(1) in RR) is True
    assert (sin(1) in CC) is True
    assert (sin(1) in ALG) is False
    assert (sin(1) in ZZ.inject(x, y)) is False
    assert (sin(1) in QQ.inject(x, y)) is False
    assert (sin(1) in RR.inject(x, y)) is True

    assert (x**2 + 1 in EX) is True
    assert (x**2 + 1 in ZZ) is False
    assert (x**2 + 1 in QQ) is False
    assert (x**2 + 1 in RR) is False
    assert (x**2 + 1 in CC) is False
    assert (x**2 + 1 in ALG) is False
    assert (x**2 + 1 in ZZ.inject(x)) is True
    assert (x**2 + 1 in QQ.inject(x)) is True
    assert (x**2 + 1 in RR.inject(x)) is True
    assert (x**2 + 1 in ZZ.inject(x, y)) is True
    assert (x**2 + 1 in QQ.inject(x, y)) is True
    assert (x**2 + 1 in RR.inject(x, y)) is True

    assert (x**2 + y**2 in EX) is True
    assert (x**2 + y**2 in ZZ) is False
    assert (x**2 + y**2 in QQ) is False
    assert (x**2 + y**2 in RR) is False
    assert (x**2 + y**2 in CC) is False
    assert (x**2 + y**2 in ALG) is False
    assert (x**2 + y**2 in ZZ.inject(x)) is False
    assert (x**2 + y**2 in QQ.inject(x)) is False
    assert (x**2 + y**2 in RR.inject(x)) is False
    assert (x**2 + y**2 in ZZ.inject(x, y)) is True
    assert (x**2 + y**2 in QQ.inject(x, y)) is True
    assert (x**2 + y**2 in RR.inject(x, y)) is True

    assert (Rational(3, 2) * x / (y + 1) - z in QQ.inject(x, y, z)) is False

    R = QQ.inject(x)

    assert R(1) in ZZ

    F = R.field

    assert F(1) in ZZ