コード例 #1
0
ファイル: transformer.py プロジェクト: zhanpengfang/research
    def _mask_attn_weights(self, attn_weights):
        """ Masks the attention weights
            :param attn_weights: The attention weights - [batch, nb_head, seq_len, seq_len + past_length]
            :return: A tensor of 0 and 1. of the same shape and dtype as attn_weights
        """
        seq_len = array_ops.shape(attn_weights)[-2]
        total_len = array_ops.shape(attn_weights)[-1]

        # 1) Creating the attention mask matrix (with the lower triangle set to 1. on the right)
        # e.g. if seq_len == 3, and total_len == 10
        # the attention mask would be:       - [seq_len, total_len]
        # [[1., 1., 1., 1., 1., 1., 1., 1., 0., 0.],
        #  [1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
        #  [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]
        num_lower = math_ops.cast(-1, dtypes.int32)
        num_upper = total_len - seq_len
        attn_mask = gen_array_ops.matrix_band_part(
            array_ops.ones([seq_len, total_len]), num_lower, num_upper)

        # No past_attentions/context - We just add two leading dimensions to attn_mask and can return it
        if self._past_seq_lengths is None:
            return attn_mask[None, None, :, :]

        # If we have a context with varying sequence length, we also need to mask the items after the end of sequence
        # e.g.
        # [[1., 1., 1., 0., 0., 0., 0., 1., 1., 1.],            # => length of 3 (padded to 7) + seq_len of 3
        #  [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],            # => length of 7 (padded to 7) + seq_len of 3
        #  [1., 1., 1., 1., 1., 0., 0., 1., 1., 1.]]            # => length of 5 (padded to 7) + seq_len of 3
        #
        # The resulting attention mask would be the product of the two.
        # [[1., 1., 1., 0., 0., 0., 0., 1., 0., 0.],
        #  [1., 1., 1., 1., 1., 1., 1., 1., 1., 0.],
        #  [1., 1., 1., 1., 1., 0., 0., 1., 1., 1.]]
        seq_mask = array_ops.sequence_mask(
            self._past_seq_lengths, dtype=dtypes.float32)  # [b, max_len]
        seq_mask = pad_axis(seq_mask, axis=-1,
                            min_size=total_len)  # [b, total_len]

        # Returning the multiplication of the two masks
        return gen_math_ops.mul(attn_mask[None, None, :, :],
                                seq_mask[:, None,
                                         None, :])  # [b, nb_heads, seq, total]
コード例 #2
0
ファイル: model.py プロジェクト: zhanpengfang/research
    def _build_policy_initial(self):
        """ Builds the policy model (initial step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.initializers import uniform
        from diplomacy_research.utils.tensorflow import build_sparse_batched_tensor, pad_axis, to_float, to_bool

        if not self.placeholders:
            self.placeholders = self.get_placeholders()

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.cluster_config else None):

                # Features
                board_state = to_float(self.features['board_state'])        # tf.flt32 - (b, NB_NODES, NB_FEATURES)
                board_alignments = to_float(self.features['board_alignments'])         # (b, NB_NODES * len)
                decoder_inputs = self.features['decoder_inputs']            # tf.int32 - (b, <= 1 + TOK/ORD * NB_SCS)
                decoder_lengths = self.features['decoder_lengths']          # tf.int32 - (b,)
                current_power = self.features['current_power']              # tf.int32 - (b,)
                current_season = self.features['current_season']            # tf.int32 - (b,)
                dropout_rates = self.features['dropout_rate']               # tf.flt32 - (b,)

                # Batch size
                batch_size = tf.shape(board_state)[0]

                # Reshaping board alignments
                board_alignments = tf.reshape(board_alignments, [batch_size, -1, NB_NODES])
                board_alignments /= tf.math.maximum(1., tf.reduce_sum(board_alignments, axis=-1, keepdims=True))

                # Building decoder mask
                decoder_mask_indices = self.features['decoder_mask_indices']    # tf.int64 - (b, 3 * len)
                decoder_mask_shape = self.proto_fields['decoder_mask'].shape

                # Overriding dropout_rates if pholder('dropout_rate') > 0
                dropout_rates = tf.cond(tf.greater(pholder('dropout_rate'), 0.),
                                        true_fn=lambda: tf.zeros_like(dropout_rates) + pholder('dropout_rate'),
                                        false_fn=lambda: dropout_rates)

                # Padding inputs
                board_alignments = pad_axis(board_alignments, axis=1, min_size=tf.reduce_max(decoder_lengths))
                decoder_inputs = pad_axis(decoder_inputs, axis=-1, min_size=2)
                decoder_mask_indices = pad_axis(decoder_mask_indices, axis=-1, min_size=len(decoder_mask_shape))

                # Reshaping to (b, len, 3)
                # decoder_mask is -- tf.bool (batch, TOK/ORD * NB_SC, VOCAB_SIZE, VOCAB_SIZE)
                decoder_mask_indices = tf.reshape(decoder_mask_indices, [batch_size, -1, len(decoder_mask_shape)])
                decoder_mask = build_sparse_batched_tensor(decoder_mask_indices,
                                                           value=True,
                                                           dtype=tf.bool,
                                                           dense_shape=decoder_mask_shape)

                # Making sure all RNN lengths are at least 1
                # No need to trim, because the fields are variable length
                raw_decoder_lengths = decoder_lengths
                decoder_lengths = tf.math.maximum(1, decoder_lengths)

                # Placeholders
                decoder_type = tf.reduce_max(pholder('decoder_type'))
                is_training = pholder('is_training')

                # Computing FiLM Gammas and Betas
                with tf.variable_scope('film_scope'):
                    power_embedding = uniform(name='power_embedding',
                                              shape=[NB_POWERS, hps('power_emb_size')],
                                              scale=1.)
                    current_power_mask = tf.one_hot(current_power, NB_POWERS, dtype=tf.float32)
                    current_power_embedding = tf.reduce_sum(power_embedding[None]
                                                            * current_power_mask[:, :, None], axis=1)  # (b, power_emb)
                    film_embedding_input = current_power_embedding

                    # Also conditioning on current_season
                    season_embedding = uniform(name='season_embedding',
                                               shape=[NB_SEASONS, hps('season_emb_size')],
                                               scale=1.)
                    current_season_mask = tf.one_hot(current_season, NB_SEASONS, dtype=tf.float32)
                    current_season_embedding = tf.reduce_sum(season_embedding[None]                # (b,season_emb)
                                                             * current_season_mask[:, :, None], axis=1)
                    film_embedding_input = tf.concat([film_embedding_input, current_season_embedding], axis=1)

                    film_output_dims = [hps('gcn_size')] * (hps('nb_graph_conv') - 1) + [hps('attn_size')]
                    film_weights = tf.layers.Dense(units=2 * sum(film_output_dims),         # (b, 1, 750)
                                                   use_bias=True,
                                                   activation=None)(film_embedding_input)[:, None, :]
                    film_gammas, film_betas = tf.split(film_weights, 2, axis=2)             # (b, 1, 750)
                    film_gammas = tf.split(film_gammas, film_output_dims, axis=2)
                    film_betas = tf.split(film_betas, film_output_dims, axis=2)

                    # Storing as temporary output
                    self.add_output('_board_state_conv_film_gammas', film_gammas)
                    self.add_output('_board_state_conv_film_betas', film_betas)

                # Creating graph convolution
                with tf.variable_scope('graph_conv_scope'):
                    assert hps('nb_graph_conv') >= 2

                    # Encoding board state
                    board_state_0yr_conv = self.encode_board(board_state, name='board_state_conv')
                    board_state_conv = self.get_board_state_conv(board_state_0yr_conv, is_training)

                # Creating word embedding vector (to embed word_ix)
                # Embeddings needs to be cached locally on the worker, otherwise TF can't compute their gradients
                with tf.variable_scope('word_embedding_scope'):
                    # embedding:    (voc_size, 256)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    word_embedding = uniform(name='word_embedding',
                                             shape=[VOCABULARY_SIZE, hps('word_emb_size')],
                                             scale=1.,
                                             caching_device=caching_device)

        # Building output tags
        outputs = {'batch_size': batch_size,
                   'board_alignments': board_alignments,
                   'decoder_inputs': decoder_inputs,
                   'decoder_mask': decoder_mask,
                   'decoder_type': decoder_type,
                   'raw_decoder_lengths': raw_decoder_lengths,
                   'decoder_lengths': decoder_lengths,
                   'board_state_conv': board_state_conv,
                   'board_state_0yr_conv': board_state_0yr_conv,
                   'word_embedding': word_embedding,
                   'in_retreat_phase': tf.math.logical_and(         # 1) board not empty, 2) disl. units present
                       tf.reduce_sum(board_state[:], axis=[1, 2]) > 0,
                       tf.math.logical_not(to_bool(tf.reduce_min(board_state[:, :, 23], -1))))}

        # Adding to graph
        self.add_meta_information(outputs)
コード例 #3
0
ファイル: model.py プロジェクト: zhanpengfang/research
    def _build_policy_initial(self):
        """ Builds the policy model (initial step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.initializers import uniform
        from diplomacy_research.utils.tensorflow import build_sparse_batched_tensor, pad_axis, to_float, to_bool

        if not self.placeholders:
            self.placeholders = self.get_placeholders()

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.cluster_config else None):

                # Features
                board_state = to_float(self.features['board_state'])        # tf.flt32 - (b, NB_NODES, NB_FEATURES)
                decoder_inputs = self.features['decoder_inputs']            # tf.int32 - (b, <= 1 + TOK/ORD * NB_SCS)
                decoder_lengths = self.features['decoder_lengths']          # tf.int32 - (b,)
                dropout_rates = self.features['dropout_rate']               # tf.flt32 - (b,)

                # Batch size
                batch_size = tf.shape(board_state)[0]

                # Building decoder mask
                decoder_mask_indices = self.features['decoder_mask_indices']    # tf.int64 - (b, 3 * len)
                decoder_mask_shape = self.proto_fields['decoder_mask'].shape

                # Overriding dropout_rates if pholder('dropout_rate') > 0
                dropout_rates = tf.cond(tf.greater(pholder('dropout_rate'), 0.),
                                        true_fn=lambda: tf.zeros_like(dropout_rates) + pholder('dropout_rate'),
                                        false_fn=lambda: dropout_rates)

                # Padding inputs
                decoder_inputs = pad_axis(decoder_inputs, axis=-1, min_size=2)
                decoder_mask_indices = pad_axis(decoder_mask_indices, axis=-1, min_size=len(decoder_mask_shape))

                # Reshaping to (b, len, 3)
                # decoder_mask is -- tf.bool (batch, TOK/ORD * NB_SC, VOCAB_SIZE, VOCAB_SIZE)
                decoder_mask_indices = tf.reshape(decoder_mask_indices, [batch_size, -1, len(decoder_mask_shape)])
                decoder_mask = build_sparse_batched_tensor(decoder_mask_indices,
                                                           value=True,
                                                           dtype=tf.bool,
                                                           dense_shape=decoder_mask_shape)

                # Making sure all RNN lengths are at least 1
                # No need to trim, because the fields are variable length
                raw_decoder_lengths = decoder_lengths
                decoder_lengths = tf.math.maximum(1, decoder_lengths)

                # Placeholders
                decoder_type = tf.reduce_max(pholder('decoder_type'))

                # Creating word embedding vector (to embed word_ix)
                # Embeddings needs to be cached locally on the worker, otherwise TF can't compute their gradients
                with tf.variable_scope('word_embedding_scope'):
                    # embedding:    (voc_size, 256)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    word_embedding = uniform(name='word_embedding',
                                             shape=[VOCABULARY_SIZE, hps('word_emb_size')],
                                             scale=1.,
                                             caching_device=caching_device)

        # Building output tags
        outputs = {'batch_size': batch_size,
                   'decoder_inputs': decoder_inputs,
                   'decoder_mask': decoder_mask,
                   'decoder_type': decoder_type,
                   'raw_decoder_lengths': raw_decoder_lengths,
                   'decoder_lengths': decoder_lengths,
                   'board_state_conv': tf.zeros([batch_size, NB_NODES, 0], dtype=tf.float32),
                   'board_state_0yr_conv': tf.zeros([batch_size, NB_NODES, 0], dtype=tf.float32),
                   'word_embedding': word_embedding,
                   'in_retreat_phase': tf.math.logical_and(         # 1) board not empty, 2) disl. units present
                       tf.reduce_sum(board_state[:], axis=[1, 2]) > 0,
                       tf.math.logical_not(to_bool(tf.reduce_min(board_state[:, :, 23], -1))))}

        # Adding to graph
        self.add_meta_information(outputs)
コード例 #4
0
    def _build_policy_initial(self):
        """ Builds the policy model (initial step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.initializers import uniform
        from diplomacy_research.utils.tensorflow import pad_axis, to_int32, to_float, to_bool

        if not self.placeholders:
            self.placeholders = self.get_placeholders()

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.cluster_config else None):

                # Features
                board_state = to_float(self.features['board_state'])        # tf.flt32 - (b, NB_NODES, NB_FEATURES)
                decoder_inputs = self.features['decoder_inputs']            # tf.int32 - (b, <= 1 + NB_SCS)
                decoder_lengths = self.features['decoder_lengths']          # tf.int32 - (b,)
                candidates = self.features['candidates']                    # tf.int32 - (b, nb_locs * MAX_CANDIDATES)
                dropout_rates = self.features['dropout_rate']               # tf.flt32 - (b,)

                # Batch size
                batch_size = tf.shape(board_state)[0]

                # Overriding dropout_rates if pholder('dropout_rate') > 0
                dropout_rates = tf.cond(tf.greater(pholder('dropout_rate'), 0.),
                                        true_fn=lambda: tf.zeros_like(dropout_rates) + pholder('dropout_rate'),
                                        false_fn=lambda: dropout_rates)

                # Padding decoder_inputs and candidates
                decoder_inputs = pad_axis(decoder_inputs, axis=-1, min_size=2)
                candidates = pad_axis(candidates, axis=-1, min_size=MAX_CANDIDATES)

                # Making sure all RNN lengths are at least 1
                # No need to trim, because the fields are variable length
                raw_decoder_lengths = decoder_lengths
                decoder_lengths = tf.math.maximum(1, decoder_lengths)

                # Placeholders
                decoder_type = tf.reduce_max(pholder('decoder_type'))
                is_training = pholder('is_training')

                # Reshaping candidates
                candidates = tf.reshape(candidates, [batch_size, -1, MAX_CANDIDATES])
                candidates = candidates[:, :tf.reduce_max(decoder_lengths), :]      # tf.int32 - (b, nb_locs, MAX_CAN)

                # Creating graph convolution
                with tf.variable_scope('graph_conv_scope'):
                    assert hps('nb_graph_conv') >= 2

                    # Encoding board state
                    board_state_0yr_conv = self.encode_board(board_state, name='board_state_conv')
                    board_state_conv = self.get_board_state_conv(board_state_0yr_conv, is_training)

                # Creating order embedding vector (to embed order_ix)
                # Embeddings needs to be cached locally on the worker, otherwise TF can't compute their gradients
                with tf.variable_scope('order_embedding_scope'):
                    # embedding:    (order_vocab_size, 64)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    partitioner = tf.fixed_size_partitioner(NB_PARTITIONS) if hps('use_partitioner') else None
                    order_embedding = uniform(name='order_embedding',
                                              shape=[ORDER_VOCABULARY_SIZE, hps('order_emb_size')],
                                              scale=1.,
                                              partitioner=partitioner,
                                              caching_device=caching_device)

                # Creating candidate embedding
                with tf.variable_scope('candidate_embedding_scope'):
                    # embedding:    (order_vocab_size, 64)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    partitioner = tf.fixed_size_partitioner(NB_PARTITIONS) if hps('use_partitioner') else None
                    candidate_embedding = uniform(name='candidate_embedding',
                                                  shape=[ORDER_VOCABULARY_SIZE, hps('lstm_size') + 1],
                                                  scale=1.,
                                                  partitioner=partitioner,
                                                  caching_device=caching_device)

                # Trimming to the maximum number of candidates
                candidate_lengths = tf.reduce_sum(to_int32(tf.math.greater(candidates, PAD_ID)), -1)    # int32 - (b,)
                max_candidate_length = tf.math.maximum(1, tf.reduce_max(candidate_lengths))
                candidates = candidates[:, :, :max_candidate_length]

        # Building output tags
        outputs = {'batch_size': batch_size,
                   'decoder_inputs': decoder_inputs,
                   'decoder_type': decoder_type,
                   'raw_decoder_lengths': raw_decoder_lengths,
                   'decoder_lengths': decoder_lengths,
                   'board_state_conv': board_state_conv,
                   'board_state_0yr_conv': board_state_0yr_conv,
                   'order_embedding': order_embedding,
                   'candidate_embedding': candidate_embedding,
                   'candidates': candidates,
                   'max_candidate_length': max_candidate_length,
                   'in_retreat_phase': tf.math.logical_and(             # 1) board not empty, 2) disl. units present
                       tf.reduce_sum(board_state[:], axis=[1, 2]) > 0,
                       tf.math.logical_not(to_bool(tf.reduce_min(board_state[:, :, 23], -1))))}

        # Adding to graph
        self.add_meta_information(outputs)
コード例 #5
0
    def _build_policy_initial(self):
        """ Builds the policy model (initial step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.initializers import uniform
        from diplomacy_research.utils.tensorflow import pad_axis, to_int32, to_float, to_bool

        if not self.placeholders:
            self.placeholders = self.get_placeholders()

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.
                           cluster_config else None):

                # Features
                board_state = to_float(
                    self.features['board_state']
                )  # tf.flt32 - (b, NB_NODES, NB_FEATURES)
                board_alignments = to_float(
                    self.features['board_alignments'])  # (b, NB_NODES * len)
                prev_orders_state = to_float(
                    self.features['prev_orders_state']
                )  # (b, NB_PRV_OD, NB_ND, NB_OD_FT)
                decoder_inputs = self.features[
                    'decoder_inputs']  # tf.int32 - (b, <= 1 + NB_SCS)
                decoder_lengths = self.features[
                    'decoder_lengths']  # tf.int32 - (b,)
                candidates = self.features[
                    'candidates']  # tf.int32 - (b, nb_locs * MAX_CANDIDATES)
                current_power = self.features[
                    'current_power']  # tf.int32 - (b,)
                current_season = self.features[
                    'current_season']  # tf.int32 - (b,)
                dropout_rates = self.features[
                    'dropout_rate']  # tf.flt32 - (b,)

                # Batch size
                batch_size = tf.shape(board_state)[0]

                # Reshaping board alignments
                board_alignments = tf.reshape(board_alignments,
                                              [batch_size, -1, NB_NODES])
                board_alignments /= tf.math.maximum(
                    1., tf.reduce_sum(board_alignments, axis=-1,
                                      keepdims=True))

                # Overriding dropout_rates if pholder('dropout_rate') > 0
                dropout_rates = tf.cond(
                    tf.greater(pholder('dropout_rate'), 0.),
                    true_fn=lambda: tf.zeros_like(dropout_rates) + pholder(
                        'dropout_rate'),
                    false_fn=lambda: dropout_rates)

                # Padding decoder_inputs and candidates
                board_alignments = pad_axis(
                    board_alignments,
                    axis=1,
                    min_size=tf.reduce_max(decoder_lengths))
                decoder_inputs = pad_axis(decoder_inputs, axis=-1, min_size=2)
                candidates = pad_axis(candidates,
                                      axis=-1,
                                      min_size=MAX_CANDIDATES)

                # Making sure all RNN lengths are at least 1
                # No need to trim, because the fields are variable length
                raw_decoder_lengths = decoder_lengths
                decoder_lengths = tf.math.maximum(1, decoder_lengths)

                # Placeholders
                decoder_type = tf.reduce_max(pholder('decoder_type'))
                is_training = pholder('is_training')

                # Reshaping candidates
                candidates = tf.reshape(candidates,
                                        [batch_size, -1, MAX_CANDIDATES])
                candidates = candidates[:, :tf.reduce_max(
                    decoder_lengths), :]  # tf.int32 - (b, nb_locs, MAX_CAN)

                # Computing FiLM Gammas and Betas
                with tf.variable_scope('film_scope'):
                    power_embedding = uniform(
                        name='power_embedding',
                        shape=[NB_POWERS, hps('power_emb_size')],
                        scale=1.)
                    current_power_mask = tf.one_hot(current_power,
                                                    NB_POWERS,
                                                    dtype=tf.float32)
                    current_power_embedding = tf.reduce_sum(
                        power_embedding[None] * current_power_mask[:, :, None],
                        axis=1)  # (b, power_emb)
                    film_embedding_input = current_power_embedding

                    # Also conditioning on current_season
                    season_embedding = uniform(
                        name='season_embedding',
                        shape=[NB_SEASONS, hps('season_emb_size')],
                        scale=1.)
                    current_season_mask = tf.one_hot(current_season,
                                                     NB_SEASONS,
                                                     dtype=tf.float32)
                    current_season_embedding = tf.reduce_sum(
                        season_embedding[None]  # (b,season_emb)
                        * current_season_mask[:, :, None],
                        axis=1)
                    film_embedding_input = tf.concat(
                        [film_embedding_input, current_season_embedding],
                        axis=1)

                    film_output_dims = [hps('gcn_size')] * (
                        hps('nb_graph_conv') - 1) + [hps('attn_size') // 2]

                    # For board_state
                    board_film_weights = tf.layers.Dense(
                        units=2 * sum(film_output_dims),  # (b, 1, 750)
                        use_bias=True,
                        activation=None)(film_embedding_input)[:, None, :]
                    board_film_gammas, board_film_betas = tf.split(
                        board_film_weights, 2, axis=2)  # (b, 1, 750)
                    board_film_gammas = tf.split(board_film_gammas,
                                                 film_output_dims,
                                                 axis=2)
                    board_film_betas = tf.split(board_film_betas,
                                                film_output_dims,
                                                axis=2)

                    # For prev_orders
                    prev_ord_film_weights = tf.layers.Dense(
                        units=2 * sum(film_output_dims),  # (b, 1, 750)
                        use_bias=True,
                        activation=None)(film_embedding_input)[:, None, :]
                    prev_ord_film_weights = tf.tile(
                        prev_ord_film_weights,
                        [NB_PREV_ORDERS, 1, 1])  # (n_pr, 1, 750)
                    prev_ord_film_gammas, prev_ord_film_betas = tf.split(
                        prev_ord_film_weights, 2, axis=2)
                    prev_ord_film_gammas = tf.split(prev_ord_film_gammas,
                                                    film_output_dims,
                                                    axis=2)
                    prev_ord_film_betas = tf.split(prev_ord_film_betas,
                                                   film_output_dims,
                                                   axis=2)

                    # Storing as temporary output
                    self.add_output('_board_state_conv_film_gammas',
                                    board_film_gammas)
                    self.add_output('_board_state_conv_film_betas',
                                    board_film_betas)
                    self.add_output('_prev_orders_conv_film_gammas',
                                    prev_ord_film_gammas)
                    self.add_output('_prev_orders_conv_film_betas',
                                    prev_ord_film_betas)

                # Creating graph convolution
                with tf.variable_scope('graph_conv_scope'):
                    assert hps('nb_graph_conv') >= 2
                    assert hps('attn_size') % 2 == 0

                    # Encoding board state
                    board_state_0yr_conv = self.encode_board(
                        board_state, name='board_state_conv')

                    # Encoding prev_orders
                    prev_orders_state = tf.reshape(prev_orders_state, [
                        batch_size * NB_PREV_ORDERS, NB_NODES,
                        NB_ORDERS_FEATURES
                    ])
                    prev_ord_conv = self.encode_board(prev_orders_state,
                                                      name='prev_orders_conv')

                    # Splitting back into (b, nb_prev, NB_NODES, attn_size // 2)
                    # Reducing the prev ord conv using avg
                    prev_ord_conv = tf.reshape(prev_ord_conv, [
                        batch_size, NB_PREV_ORDERS, NB_NODES,
                        hps('attn_size') // 2
                    ])
                    prev_ord_conv = tf.reduce_mean(prev_ord_conv, axis=1)

                    # Concatenating the current board conv with the prev ord conv
                    # The final board_state_conv should be of dimension (b, NB_NODE, attn_size)
                    board_state_conv = self.get_board_state_conv(
                        board_state_0yr_conv, is_training, prev_ord_conv)

                # Creating order embedding vector (to embed order_ix)
                # Embeddings needs to be cached locally on the worker, otherwise TF can't compute their gradients
                with tf.variable_scope('order_embedding_scope'):
                    # embedding:    (order_vocab_size, 64)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    partitioner = tf.fixed_size_partitioner(
                        NB_PARTITIONS) if hps('use_partitioner') else None
                    order_embedding = uniform(
                        name='order_embedding',
                        shape=[ORDER_VOCABULARY_SIZE,
                               hps('order_emb_size')],
                        scale=1.,
                        partitioner=partitioner,
                        caching_device=caching_device)

                # Creating candidate embedding
                with tf.variable_scope('candidate_embedding_scope'):
                    # embedding:    (order_vocab_size, 64)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    partitioner = tf.fixed_size_partitioner(
                        NB_PARTITIONS) if hps('use_partitioner') else None
                    candidate_embedding = uniform(
                        name='candidate_embedding',
                        shape=[ORDER_VOCABULARY_SIZE,
                               hps('lstm_size') + 1],
                        scale=1.,
                        partitioner=partitioner,
                        caching_device=caching_device)

                # Trimming to the maximum number of candidates
                candidate_lengths = tf.reduce_sum(
                    to_int32(tf.math.greater(candidates, PAD_ID)),
                    -1)  # int32 - (b,)
                max_candidate_length = tf.math.maximum(
                    1, tf.reduce_max(candidate_lengths))
                candidates = candidates[:, :, :max_candidate_length]

        # Building output tags
        outputs = {
            'batch_size':
            batch_size,
            'board_alignments':
            board_alignments,
            'decoder_inputs':
            decoder_inputs,
            'decoder_type':
            decoder_type,
            'raw_decoder_lengths':
            raw_decoder_lengths,
            'decoder_lengths':
            decoder_lengths,
            'board_state_conv':
            board_state_conv,
            'board_state_0yr_conv':
            board_state_0yr_conv,
            'prev_ord_conv':
            prev_ord_conv,
            'order_embedding':
            order_embedding,
            'candidate_embedding':
            candidate_embedding,
            'candidates':
            candidates,
            'max_candidate_length':
            max_candidate_length,
            'in_retreat_phase':
            tf.math.logical_and(  # 1) board not empty, 2) disl. units present
                tf.reduce_sum(board_state[:], axis=[1, 2]) > 0,
                tf.math.logical_not(
                    to_bool(tf.reduce_min(board_state[:, :, 23], -1))))
        }

        # Adding to graph
        self.add_meta_information(outputs)