コード例 #1
0
ファイル: CGD.py プロジェクト: zzygyx9119/mckb
    def _add_therapy_drug_association(self, drug_id, disease_id, therapy_status_id):
        """
        Create an association linking a drug and disease with
        RO:0002606 (substance_that_treats) and any supporting information
        such as FDA approval and source (not implemented)
        :param drug_id: Id as curie of the drug
        :param disease_id: Id as curie of the disease
        :param therapy_status: (Optional) String label of therapy approval status
        :return: None
        """
        gu = GraphUtils(curie_map.get())
        # Placeholder relationship, note this does not exist in RO
        relationship_id = "RO:has_approval_status"
        gu.addTriple(self.graph, drug_id, gu.object_properties['substance_that_treats'], disease_id)
        # Make association
        drug_disease_annot = self.make_cgd_id("assoc{0}{1}".format(drug_id, disease_id))

        therapy_disease_assoc = Assoc(self.name)
        therapy_disease_assoc.set_subject(drug_id)
        therapy_disease_assoc.set_relationship(gu.object_properties['substance_that_treats'])
        therapy_disease_assoc.set_object(disease_id)
        therapy_disease_assoc.set_association_id(drug_disease_annot)
        therapy_disease_assoc.add_association_to_graph(self.graph)

        gu.addTriple(self.graph, drug_disease_annot, relationship_id, therapy_status_id)
コード例 #2
0
ファイル: GeneOntology.py プロジェクト: david-w-millar/dipper
    def process_gaf(self, file, limit, id_map=None, eco_map=None):

        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph

        model = Model(graph)
        geno = Genotype(graph)
        LOG.info("Processing Gene Associations from %s", file)
        line_counter = 0
        uniprot_hit = 0
        uniprot_miss = 0
        if '7955' in self.tax_ids:
            zfin = ZFIN(self.graph_type, self.are_bnodes_skized)
        if '6239' in self.tax_ids:
            wbase = WormBase(self.graph_type, self.are_bnodes_skized)

        with gzip.open(file, 'rb') as csvfile:
            filereader = csv.reader(io.TextIOWrapper(csvfile, newline=""),
                                    delimiter='\t',
                                    quotechar='\"')
            for row in filereader:
                line_counter += 1
                # comments start with exclamation
                if re.match(r'!', ''.join(row)):
                    continue

                if len(row) > 17 or len(row) < 15:
                    LOG.warning(
                        "Wrong number of columns %i, expected 15 or 17\n%s",
                        len(row), row)
                    continue

                if 17 > len(row) >= 15:
                    row += [""] * (17 - len(row))

                (dbase, gene_num, gene_symbol, qualifier, go_id, ref,
                 eco_symbol, with_or_from, aspect, gene_name, gene_synonym,
                 object_type, taxon, date, assigned_by, annotation_extension,
                 gene_product_form_id) = row

                # test for required fields
                if (dbase == '' or gene_num == '' or gene_symbol == ''
                        or go_id == '' or ref == '' or eco_symbol == ''
                        or aspect == '' or object_type == '' or taxon == ''
                        or date == '' or assigned_by == ''):
                    LOG.error(
                        "Missing required part of annotation on row %d:\n" +
                        '\t'.join(row), line_counter)
                    continue

                # deal with qualifier NOT, contributes_to, colocalizes_with
                if re.search(r'NOT', qualifier):
                    continue

                if dbase in self.localtt:
                    dbase = self.localtt[dbase]
                uniprotid = None
                gene_id = None
                if dbase == 'UniProtKB':
                    if id_map is not None and gene_num in id_map:
                        gene_id = id_map[gene_num]
                        uniprotid = ':'.join((dbase, gene_num))
                        (dbase, gene_num) = gene_id.split(':')
                        uniprot_hit += 1
                    else:
                        # LOG.warning(
                        #   "UniProt id %s  is without a 1:1 mapping to entrez/ensembl",
                        #    gene_num)
                        uniprot_miss += 1
                        continue
                else:
                    gene_num = gene_num.split(':')[-1]  # last
                    gene_id = ':'.join((dbase, gene_num))

                if self.test_mode and not (re.match(r'NCBIGene', gene_id)
                                           and int(gene_num) in self.test_ids):
                    continue

                model.addClassToGraph(gene_id, gene_symbol)
                if gene_name != '':
                    model.addDescription(gene_id, gene_name)
                if gene_synonym != '':
                    for syn in re.split(r'\|', gene_synonym):
                        model.addSynonym(gene_id, syn.strip())
                if re.search(r'\|', taxon):
                    # TODO add annotations with >1 taxon
                    LOG.info(">1 taxon (%s) on line %d.  skipping", taxon,
                             line_counter)
                else:
                    tax_id = re.sub(r'taxon:', 'NCBITaxon:', taxon)
                    geno.addTaxon(tax_id, gene_id)

                assoc = Assoc(graph, self.name)
                assoc.set_subject(gene_id)
                assoc.set_object(go_id)

                try:
                    eco_id = eco_map[eco_symbol]
                    assoc.add_evidence(eco_id)
                except KeyError:
                    LOG.error("Evidence code (%s) not mapped", eco_symbol)

                refs = re.split(r'\|', ref)
                for ref in refs:
                    ref = ref.strip()
                    if ref != '':
                        prefix = ref.split(':')[0]  # sidestep 'MGI:MGI:'
                        if prefix in self.localtt:
                            prefix = self.localtt[prefix]
                        ref = ':'.join((prefix, ref.split(':')[-1]))
                        refg = Reference(graph, ref)
                        if prefix == 'PMID':
                            ref_type = self.globaltt['journal article']
                            refg.setType(ref_type)
                        refg.addRefToGraph()
                        assoc.add_source(ref)

                # TODO add the source of the annotations from assigned by?

                rel = self.resolve(aspect, mandatory=False)
                if rel is not None and aspect == rel:
                    if aspect == 'F' and re.search(r'contributes_to',
                                                   qualifier):
                        assoc.set_relationship(self.globaltt['contributes to'])
                    else:
                        LOG.error(
                            "Aspect: %s with qualifier: %s  is not recognized",
                            aspect, qualifier)
                elif rel is not None:
                    assoc.set_relationship(rel)
                    assoc.add_association_to_graph()
                else:
                    LOG.warning("No predicate for association \n%s\n",
                                str(assoc))

                if uniprotid is not None:
                    assoc.set_description('Mapped from ' + uniprotid)
                # object_type should be one of:
                # protein_complex; protein; transcript; ncRNA; rRNA; tRNA;
                # snRNA; snoRNA; any subtype of ncRNA in the Sequence Ontology.
                # If the precise product type is unknown,
                # gene_product should be used
                #######################################################################

                # Derive G2P Associations from IMP annotations
                # in version 2.1 Pipe will indicate 'OR'
                # and Comma will indicate 'AND'.
                # in version 2.0, multiple values are separated by pipes
                # where the pipe has been used to mean 'AND'
                if eco_symbol == 'IMP' and with_or_from != '':
                    withitems = re.split(r'\|', with_or_from)
                    phenotypeid = go_id + 'PHENOTYPE'
                    # create phenotype associations
                    for i in withitems:
                        if i == '' or re.match(
                                r'(UniProtKB|WBPhenotype|InterPro|HGNC)', i):
                            LOG.warning(
                                "Don't know what having a uniprot id " +
                                "in the 'with' column means of %s", uniprotid)
                            continue
                        i = re.sub(r'MGI\:MGI\:', 'MGI:', i)
                        i = re.sub(r'WB:', 'WormBase:', i)

                        # for worms and fish, they might give a RNAi or MORPH
                        # in these cases make a reagent-targeted gene
                        if re.search('MRPHLNO|CRISPR|TALEN', i):
                            targeted_gene_id = zfin.make_targeted_gene_id(
                                gene_id, i)
                            geno.addReagentTargetedGene(
                                i, gene_id, targeted_gene_id)
                            # TODO PYLINT why is this needed?
                            # Redefinition of assoc type from
                            # dipper.models.assoc.Association.Assoc to
                            # dipper.models.assoc.G2PAssoc.G2PAssoc
                            assoc = G2PAssoc(graph, self.name,
                                             targeted_gene_id, phenotypeid)
                        elif re.search(r'WBRNAi', i):
                            targeted_gene_id = wbase.make_reagent_targeted_gene_id(
                                gene_id, i)
                            geno.addReagentTargetedGene(
                                i, gene_id, targeted_gene_id)
                            assoc = G2PAssoc(graph, self.name,
                                             targeted_gene_id, phenotypeid)
                        else:
                            assoc = G2PAssoc(graph, self.name, i, phenotypeid)
                        for ref in refs:
                            ref = ref.strip()
                            if ref != '':
                                prefix = ref.split(':')[0]
                                if prefix in self.localtt:
                                    prefix = self.localtt[prefix]
                                ref = ':'.join((prefix, ref.split(':')[-1]))
                                assoc.add_source(ref)
                                # experimental phenotypic evidence
                                assoc.add_evidence(self.globaltt[
                                    'experimental phenotypic evidence'])
                        assoc.add_association_to_graph()
                        # TODO should the G2PAssoc be
                        # the evidence for the GO assoc?

                if not self.test_mode and limit is not None and line_counter > limit:
                    break
            uniprot_tot = (uniprot_hit + uniprot_miss)
            uniprot_per = 0.0
            if uniprot_tot != 0:
                uniprot_per = 100.0 * uniprot_hit / uniprot_tot
            LOG.info(
                "Uniprot: %.2f%% of %i benefited from the 1/4 day id mapping download",
                uniprot_per, uniprot_tot)
        return
コード例 #3
0
    def process_gaf(self, gaffile, limit, id_map=None, eco_map=None):

        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph

        model = Model(graph)
        geno = Genotype(graph)
        LOG.info("Processing Gene Associations from %s", gaffile)
        uniprot_hit = 0
        uniprot_miss = 0
        col = self.gaf_columns

        with gzip.open(gaffile, 'rb') as csvfile:
            reader = csv.reader(
                io.TextIOWrapper(csvfile, newline=""), delimiter='\t', quotechar='\"')
            for row in reader:
                # comments start with exclamation
                if row[0][0] == '!':
                    continue

                if len(row) != len(col):
                    LOG.error(
                        "Wrong number of columns %i, expected ... got:\n\t%s",
                        len(col), row)
                    exit(1)

                dbase = row[col.index('DB')].strip()
                gene_num = row[col.index('DB_Object_ID')].strip()
                gene_symbol = row[col.index('DB_Object_Symbol')].strip()
                qualifier = row[col.index('Qualifier')]
                go_id = row[col.index('GO_ID')].strip()
                ref = row[col.index('DB:Reference')].strip()
                eco_symbol = row[col.index('Evidence Code')].strip()
                with_or_from = row[col.index('With (or) From')]
                aspect = row[col.index('Aspect')].strip()
                gene_name = row[col.index('DB_Object_Name')]
                gene_synonym = row[col.index('DB_Object_Synonym')]
                # object_type = row[col.index('DB_Object_Type')].strip()
                taxon = row[col.index('Taxon and Interacting taxon')].strip()
                # date = row[col.index('Date')].strip()
                # assigned_by = row[col.index('Assigned_By')].strip()
                # annotation_extension = row[col.index('Annotation_Extension')]
                # gene_product_form_id = row[col.index('Gene_Product_Form_ID')]

                # test for required fields
                if '' in [row[:10], row[12]]:
                    LOG.error(
                        "Missing required part of annotation on row %i:\n%s",
                        reader.line_num, str(row[:-4]))
                    continue

                # (Don't) deal with qualifier NOT, contributes_to, colocalizes_with
                if re.search(r'NOT', qualifier):
                    continue

                if dbase in self.localtt:
                    dbase = self.localtt[dbase]
                uniprotid = None
                gene_id = None
                if dbase == 'UniProtKB':
                    if id_map is not None and gene_num in id_map:
                        gene_id = id_map[gene_num]
                        uniprotid = ':'.join((dbase, gene_num))
                        (dbase, gene_num) = gene_id.split(':')
                        uniprot_hit += 1
                    else:
                        # LOG.warning(
                        #   "UniProt id %s is without a 1:1 mapping to entrez/ensembl",
                        #    gene_num)
                        uniprot_miss += 1
                        continue
                else:
                    gene_num = gene_num.split(':')[-1]  # last
                    gene_id = ':'.join((dbase, gene_num))

                if self.test_mode and gene_id[:9] != 'NCBIGene:' and\
                        gene_num not in self.test_ids:
                    continue

                model.addClassToGraph(gene_id, gene_symbol)
                if gene_name != '':
                    model.addDescription(gene_id, gene_name)
                if gene_synonym != '':
                    for syn in re.split(r'\|', gene_synonym):
                        syn = syn.strip()
                        if syn[:10] == 'UniProtKB:':
                            model.addTriple(
                                gene_id, self.globaltt['has gene product'], syn)
                        elif re.fullmatch(graph.curie_regexp, syn) is not None:
                            LOG.warning(
                                'possible curie "%s" as a literal synomym for %s',
                                syn, gene_id)
                            model.addSynonym(gene_id, syn)
                        else:
                            model.addSynonym(gene_id, syn)

                for txid in taxon.split('|'):
                    tax_curie = re.sub(r'taxon:', 'NCBITaxon:', txid)
                    geno.addTaxon(tax_curie, gene_id)

                assoc = Assoc(graph, self.name)
                assoc.set_subject(gene_id)
                assoc.set_object(go_id)

                try:
                    eco_id = eco_map[eco_symbol]
                    assoc.add_evidence(eco_id)
                except KeyError:
                    LOG.error("Evidence code (%s) not mapped", eco_symbol)

                refs = re.split(r'\|', ref)
                for ref in refs:
                    ref = ref.strip()
                    if ref != '':
                        prefix = ref.split(':')[0]  # sidestep 'MGI:MGI:'
                        if prefix in self.localtt:
                            prefix = self.localtt[prefix]
                        ref = ':'.join((prefix, ref.split(':')[-1]))
                        refg = Reference(graph, ref)
                        if prefix == 'PMID':
                            ref_type = self.globaltt['journal article']
                            refg.setType(ref_type)
                        refg.addRefToGraph()
                        assoc.add_source(ref)

                # TODO add the source of the annotations from assigned by?

                rel = self.resolve(aspect, mandatory=False)
                if rel is not None and aspect == rel:
                    if aspect == 'F' and re.search(r'contributes_to', qualifier):
                        assoc.set_relationship(self.globaltt['contributes to'])
                    else:
                        LOG.error(
                            "Aspect: %s with qualifier: %s  is not recognized",
                            aspect, qualifier)
                elif rel is not None:
                    assoc.set_relationship(rel)
                    assoc.add_association_to_graph()
                else:
                    LOG.warning("No predicate for association \n%s\n", str(assoc))

                if uniprotid is not None:
                    assoc.set_description('Mapped from ' + uniprotid)
                # object_type should be one of:
                # protein_complex; protein; transcript; ncRNA; rRNA; tRNA;
                # snRNA; snoRNA; any subtype of ncRNA in the Sequence Ontology.
                # If the precise product type is unknown,
                # gene_product should be used
                ########################################################################

                # Derive G2P Associations from IMP annotations
                # in version 2.1 Pipe will indicate 'OR'
                # and Comma will indicate 'AND'.
                # in version 2.0, multiple values are separated by pipes
                # where the pipe has been used to mean 'AND'
                if eco_symbol == 'IMP' and with_or_from != '':
                    withitems = with_or_from.split('|')
                    phenotypeid = go_id + 'PHENOTYPE'
                    # create phenotype associations
                    for itm in withitems:
                        if itm == '' or re.match(
                                r'(UniProtKB|WBPhenotype|InterPro|HGNC)', itm):
                            LOG.warning(
                                "Skipping  %s from or with %s", uniprotid, itm)
                            continue
                        itm = re.sub(r'MGI\:MGI\:', 'MGI:', itm)
                        itm = re.sub(r'WB:', 'WormBase:', itm)

                        # for worms and fish, they might give a RNAi or MORPH
                        # in these cases make a reagent-targeted gene
                        if re.search('MRPHLNO|CRISPR|TALEN', itm):
                            targeted_gene_id = self.zfin.make_targeted_gene_id(
                                gene_id, itm)
                            geno.addReagentTargetedGene(itm, gene_id, targeted_gene_id)
                            # TODO PYLINT why is this needed?
                            # Redefinition of assoc type from
                            # dipper.models.assoc.Association.Assoc to
                            # dipper.models.assoc.G2PAssoc.G2PAssoc
                            assoc = G2PAssoc(
                                graph, self.name, targeted_gene_id, phenotypeid)
                        elif re.search(r'WBRNAi', itm):
                            targeted_gene_id = self.wbase.make_reagent_targeted_gene_id(
                                gene_id, itm)
                            geno.addReagentTargetedGene(itm, gene_id, targeted_gene_id)
                            assoc = G2PAssoc(
                                graph, self.name, targeted_gene_id, phenotypeid)
                        else:
                            assoc = G2PAssoc(graph, self.name, itm, phenotypeid)
                        for ref in refs:
                            ref = ref.strip()
                            if ref != '':
                                prefix = ref.split(':')[0]
                                if prefix in self.localtt:
                                    prefix = self.localtt[prefix]
                                ref = ':'.join((prefix, ref.split(':')[-1]))
                                assoc.add_source(ref)
                                # experimental phenotypic evidence
                                assoc.add_evidence(
                                    self.globaltt['experimental phenotypic evidence'])
                        assoc.add_association_to_graph()
                        # TODO should the G2PAssoc be the evidence for the GO assoc?

                if not self.test_mode and limit is not None and \
                        reader.line_num > limit:
                    break
            uniprot_tot = (uniprot_hit + uniprot_miss)
            uniprot_per = 0.0
            if uniprot_tot != 0:
                uniprot_per = 100.0 * uniprot_hit / uniprot_tot
            LOG.info(
                "Uniprot: %.2f%% of %i benefited from the 1/4 day id mapping download",
                uniprot_per, uniprot_tot)
コード例 #4
0
ファイル: GeneOntology.py プロジェクト: TomConlin/dipper
    def process_gaf(self, file, limit, id_map=None, eco_map=None):

        if self.test_mode:
            graph = self.testgraph
        else:
            graph = self.graph

        model = Model(graph)
        geno = Genotype(graph)
        LOG.info("Processing Gene Associations from %s", file)
        line_counter = 0
        uniprot_hit = 0
        uniprot_miss = 0
        if 7955 in self.tax_ids:
            zfin = ZFIN(self.graph_type, self.are_bnodes_skized)
        if 6239 in self.tax_ids:
            wbase = WormBase(self.graph_type, self.are_bnodes_skized)

        with gzip.open(file, 'rb') as csvfile:
            filereader = csv.reader(
                io.TextIOWrapper(csvfile, newline=""), delimiter='\t', quotechar='\"')
            for row in filereader:
                line_counter += 1
                # comments start with exclamation
                if re.match(r'!', ''.join(row)):
                    continue

                if len(row) > 17 or len(row) < 15:
                    LOG.warning(
                        "Wrong number of columns %i, expected 15 or 17\n%s",
                        len(row), row)
                    continue

                if 17 > len(row) >= 15:
                    row += [""] * (17 - len(row))

                (dbase,
                 gene_num,
                 gene_symbol,
                 qualifier,
                 go_id,
                 ref,
                 eco_symbol,
                 with_or_from,
                 aspect,
                 gene_name,
                 gene_synonym,
                 object_type,
                 taxon,
                 date,
                 assigned_by,
                 annotation_extension,
                 gene_product_form_id) = row

                # test for required fields
                if (dbase == '' or gene_num == '' or gene_symbol == '' or
                        go_id == '' or ref == '' or eco_symbol == '' or
                        aspect == '' or object_type == '' or taxon == '' or
                        date == '' or assigned_by == ''):
                    LOG.error(
                        "Missing required part of annotation on row %d:\n"+'\t'
                        .join(row), line_counter)
                    continue

                # deal with qualifier NOT, contributes_to, colocalizes_with
                if re.search(r'NOT', qualifier):
                    continue

                if dbase in self.localtt:
                    dbase = self.localtt[dbase]
                uniprotid = None
                gene_id = None
                if dbase == 'UniProtKB':
                    if id_map is not None and gene_num in id_map:
                        gene_id = id_map[gene_num]
                        uniprotid = ':'.join((dbase, gene_num))
                        (dbase, gene_num) = gene_id.split(':')
                        uniprot_hit += 1
                    else:
                        # LOG.warning(
                        #   "UniProt id %s  is without a 1:1 mapping to entrez/ensembl",
                        #    gene_num)
                        uniprot_miss += 1
                        continue
                else:
                    gene_num = gene_num.split(':')[-1]  # last
                    gene_id = ':'.join((dbase, gene_num))

                if self.test_mode and not(
                        re.match(r'NCBIGene', gene_id) and
                        int(gene_num) in self.test_ids):
                    continue

                model.addClassToGraph(gene_id, gene_symbol)
                if gene_name != '':
                    model.addDescription(gene_id, gene_name)
                if gene_synonym != '':
                    for syn in re.split(r'\|', gene_synonym):
                        model.addSynonym(gene_id, syn.strip())
                if re.search(r'\|', taxon):
                    # TODO add annotations with >1 taxon
                    LOG.info(
                        ">1 taxon (%s) on line %d.  skipping", taxon, line_counter)
                else:
                    tax_id = re.sub(r'taxon:', 'NCBITaxon:', taxon)
                    geno.addTaxon(tax_id, gene_id)

                assoc = Assoc(graph, self.name)
                assoc.set_subject(gene_id)
                assoc.set_object(go_id)

                try:
                    eco_id = eco_map[eco_symbol]
                    assoc.add_evidence(eco_id)
                except KeyError:
                    LOG.error("Evidence code (%s) not mapped", eco_symbol)

                refs = re.split(r'\|', ref)
                for ref in refs:
                    ref = ref.strip()
                    if ref != '':
                        prefix = ref.split(':')[0]  # sidestep 'MGI:MGI:'
                        if prefix in self.localtt:
                            prefix = self.localtt[prefix]
                        ref = ':'.join((prefix, ref.split(':')[-1]))
                        refg = Reference(graph, ref)
                        if prefix == 'PMID':
                            ref_type = self.globaltt['journal article']
                            refg.setType(ref_type)
                        refg.addRefToGraph()
                        assoc.add_source(ref)

                # TODO add the source of the annotations from assigned by?

                rel = self.resolve(aspect, mandatory=False)
                if rel is not None and aspect == rel:
                    if aspect == 'F' and re.search(r'contributes_to', qualifier):
                        assoc.set_relationship(self.globaltt['contributes to'])
                    else:
                        LOG.error(
                            "Aspect: %s with qualifier: %s  is not recognized",
                            aspect, qualifier)
                elif rel is not None:
                    assoc.set_relationship(rel)
                    assoc.add_association_to_graph()
                else:
                    LOG.warning("No predicate for association \n%s\n", str(assoc))

                if uniprotid is not None:
                    assoc.set_description('Mapped from ' + uniprotid)
                # object_type should be one of:
                # protein_complex; protein; transcript; ncRNA; rRNA; tRNA;
                # snRNA; snoRNA; any subtype of ncRNA in the Sequence Ontology.
                # If the precise product type is unknown,
                # gene_product should be used
                #######################################################################

                # Derive G2P Associations from IMP annotations
                # in version 2.1 Pipe will indicate 'OR'
                # and Comma will indicate 'AND'.
                # in version 2.0, multiple values are separated by pipes
                # where the pipe has been used to mean 'AND'
                if eco_symbol == 'IMP' and with_or_from != '':
                    withitems = re.split(r'\|', with_or_from)
                    phenotypeid = go_id+'PHENOTYPE'
                    # create phenotype associations
                    for i in withitems:
                        if i == '' or re.match(
                                r'(UniProtKB|WBPhenotype|InterPro|HGNC)', i):
                            LOG.warning(
                                "Don't know what having a uniprot id " +
                                "in the 'with' column means of %s", uniprotid)
                            continue
                        i = re.sub(r'MGI\:MGI\:', 'MGI:', i)
                        i = re.sub(r'WB:', 'WormBase:', i)

                        # for worms and fish, they might give a RNAi or MORPH
                        # in these cases make a reagent-targeted gene
                        if re.search('MRPHLNO|CRISPR|TALEN', i):
                            targeted_gene_id = zfin.make_targeted_gene_id(gene_id, i)
                            geno.addReagentTargetedGene(i, gene_id, targeted_gene_id)
                            # TODO PYLINT why is this needed?
                            # Redefinition of assoc type from
                            # dipper.models.assoc.Association.Assoc to
                            # dipper.models.assoc.G2PAssoc.G2PAssoc
                            assoc = G2PAssoc(
                                graph, self.name, targeted_gene_id, phenotypeid)
                        elif re.search(r'WBRNAi', i):
                            targeted_gene_id = wbase.make_reagent_targeted_gene_id(
                                gene_id, i)
                            geno.addReagentTargetedGene(i, gene_id, targeted_gene_id)
                            assoc = G2PAssoc(
                                graph, self.name, targeted_gene_id, phenotypeid)
                        else:
                            assoc = G2PAssoc(graph, self.name, i, phenotypeid)
                        for ref in refs:
                            ref = ref.strip()
                            if ref != '':
                                prefix = ref.split(':')[0]
                                if prefix in self.localtt:
                                    prefix = self.localtt[prefix]
                                ref = ':'.join((prefix, ref.split(':')[-1]))
                                assoc.add_source(ref)
                                # experimental phenotypic evidence
                                assoc.add_evidence(
                                    self.globaltt['experimental phenotypic evidence'])
                        assoc.add_association_to_graph()
                        # TODO should the G2PAssoc be
                        # the evidence for the GO assoc?

                if not self.test_mode and limit is not None and line_counter > limit:
                    break
            uniprot_tot = (uniprot_hit + uniprot_miss)
            uniprot_per = 0.0
            if uniprot_tot != 0:
                uniprot_per = 100.0 * uniprot_hit / uniprot_tot
            LOG.info(
                "Uniprot: %f.2%% of %i benifited from the 1/4 day id mapping download",
                uniprot_per, uniprot_tot)
        return
コード例 #5
0
ファイル: GeneOntology.py プロジェクト: kshefchek/dipper
    def process_gaf(self, file, limit, id_map=None):

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        model = Model(g)
        geno = Genotype(g)
        logger.info("Processing Gene Associations from %s", file)
        line_counter = 0

        if 7955 in self.tax_ids:
            zfin = ZFIN(self.graph_type, self.are_bnodes_skized)
        elif 6239 in self.tax_ids:
            wbase = WormBase(self.graph_type, self.are_bnodes_skized)

        with gzip.open(file, 'rb') as csvfile:
            filereader = csv.reader(io.TextIOWrapper(csvfile, newline=""),
                                    delimiter='\t', quotechar='\"')
            for row in filereader:
                line_counter += 1
                # comments start with exclamation
                if re.match(r'!', ''.join(row)):
                    continue
                (db, gene_num, gene_symbol, qualifier, go_id, ref, eco_symbol,
                 with_or_from, aspect, gene_name, gene_synonym, object_type,
                 taxon, date, assigned_by, annotation_extension,
                 gene_product_form_id) = row

                # test for required fields
                if (db == '' or gene_num == '' or gene_symbol == '' or
                        go_id == '' or ref == '' or eco_symbol == '' or
                        aspect == '' or object_type == '' or taxon == '' or
                        date == '' or assigned_by == ''):
                    logger.error(
                        "Missing required part of annotation " +
                        "on row %d:\n"+'\t'.join(row),
                        line_counter)
                    continue

                # deal with qualifier NOT, contributes_to, colocalizes_with
                if re.search(r'NOT', qualifier):
                    continue

                db = self.clean_db_prefix(db)
                uniprotid = None
                gene_id = None
                if db == 'UniProtKB':
                    mapped_ids = id_map.get(gene_num)
                    if id_map is not None and mapped_ids is not None:
                        if len(mapped_ids) == 1:
                            gene_id = mapped_ids[0]
                            uniprotid = ':'.join((db, gene_num))
                            gene_num = re.sub(r'\w+\:', '', gene_id)
                        elif len(mapped_ids) > 1:
                            # logger.warning(
                            #   "Skipping gene id mapped for >1 gene %s -> %s",
                            #    gene_num, str(mapped_ids))
                            continue
                    else:
                        continue
                elif db == 'MGI':
                    gene_num = re.sub(r'MGI:', '', gene_num)
                    gene_id = ':'.join((db, gene_num))
                    gene_id = re.sub(r'MGI\:MGI\:', 'MGI:', gene_id)
                else:
                    gene_id = ':'.join((db, gene_num))

                if self.testMode \
                        and not(
                            re.match(r'NCBIGene', gene_id) and
                            int(gene_num) in self.test_ids):
                    continue

                model.addClassToGraph(gene_id, gene_symbol)
                if gene_name != '':
                    model.addDescription(gene_id, gene_name)
                if gene_synonym != '':
                    for s in re.split(r'\|', gene_synonym):
                        model.addSynonym(gene_id, s.strip())
                if re.search(r'\|', taxon):
                    # TODO add annotations with >1 taxon
                    logger.info(">1 taxon (%s) on line %d.  skipping", taxon,
                                line_counter)
                else:
                    tax_id = re.sub(r'taxon:', 'NCBITaxon:', taxon)
                    geno.addTaxon(tax_id, gene_id)

                assoc = Assoc(g, self.name)

                assoc.set_subject(gene_id)
                assoc.set_object(go_id)

                eco_id = self.map_go_evidence_code_to_eco(eco_symbol)
                if eco_id is not None:
                    assoc.add_evidence(eco_id)

                refs = re.split(r'\|', ref)
                for r in refs:
                    r = r.strip()
                    if r != '':
                        prefix = re.split(r':', r)[0]
                        r = re.sub(prefix, self.clean_db_prefix(prefix), r)
                        r = re.sub(r'MGI\:MGI\:', 'MGI:', r)
                        ref = Reference(g, r)
                        if re.match(r'PMID', r):
                            ref_type = Reference.ref_types['journal_article']
                            ref.setType(ref_type)
                        ref.addRefToGraph()
                        assoc.add_source(r)

                # TODO add the source of the annotations from assigned by?

                aspect_rel_map = {
                    'P': model.object_properties['involved_in'],  # involved in
                    'F': model.object_properties['enables'],  # enables
                    'C': model.object_properties['part_of']  # part of
                }

                if aspect not in aspect_rel_map:
                    logger.error("Aspect not recognized: %s", aspect)

                rel = aspect_rel_map.get(aspect)
                if aspect == 'F' and re.search(r'contributes_to', qualifier):
                    rel = model.object_properties['contributes_to']
                assoc.set_relationship(rel)
                if uniprotid is not None:
                    assoc.set_description('Mapped from '+uniprotid)
                # object_type should be one of:
                # protein_complex; protein; transcript; ncRNA; rRNA; tRNA;
                # snRNA; snoRNA; any subtype of ncRNA in the Sequence Ontology.
                # If the precise product type is unknown,
                # gene_product should be used

                assoc.add_association_to_graph()

                # Derive G2P Associations from IMP annotations
                # in version 2.1 Pipe will indicate 'OR'
                # and Comma will indicate 'AND'.
                # in version 2.0, multiple values are separated by pipes
                # where the pipe has been used to mean 'AND'
                if eco_symbol == 'IMP' and with_or_from != '':
                    withitems = re.split(r'\|', with_or_from)
                    phenotypeid = go_id+'PHENOTYPE'
                    # create phenotype associations
                    for i in withitems:
                        if i == '' or \
                                re.match(
                                    r'(UniProtKB|WBPhenotype|InterPro|HGNC)',
                                    i):
                            logger.warning(
                                "Don't know what having a uniprot id " +
                                "in the 'with' column means of %s",
                                uniprotid)
                            continue
                        i = re.sub(r'MGI\:MGI\:', 'MGI:', i)
                        i = re.sub(r'WB:', 'WormBase:', i)

                        # for worms and fish, they might give a RNAi or MORPH
                        # in these cases make a reagent-targeted gene
                        if re.search('MRPHLNO|CRISPR|TALEN', i):
                            targeted_gene_id = zfin.make_targeted_gene_id(
                                gene_id, i)
                            geno.addReagentTargetedGene(i, gene_id,
                                                        targeted_gene_id)
                            # TODO PYLINT why is this:
                            # Redefinition of assoc type from
                            # dipper.models.assoc.Association.Assoc to
                            # dipper.models.assoc.G2PAssoc.G2PAssoc
                            assoc = G2PAssoc(g, self.name, targeted_gene_id,
                                             phenotypeid)
                        elif re.search(r'WBRNAi', i):
                            targeted_gene_id = \
                                wbase.make_reagent_targeted_gene_id(
                                    gene_id, i)
                            geno.addReagentTargetedGene(
                                i, gene_id, targeted_gene_id)
                            assoc = G2PAssoc(
                                g, self.name, targeted_gene_id, phenotypeid)
                        else:
                            assoc = G2PAssoc(g, self.name, i, phenotypeid)
                        for r in refs:
                            r = r.strip()
                            if r != '':
                                prefix = re.split(r':', r)[0]
                                r = re.sub(
                                    prefix, self.clean_db_prefix(prefix), r)
                                r = re.sub(r'MGI\:MGI\:', 'MGI:', r)
                                assoc.add_source(r)
                                # experimental phenotypic evidence
                                assoc.add_evidence("ECO:0000059")
                        assoc.add_association_to_graph()
                        # TODO should the G2PAssoc be
                        # the evidence for the GO assoc?

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    break

        return
コード例 #6
0
    def process_gaf(self, file, limit, id_map=None):

        if self.testMode:
            g = self.testgraph
        else:
            g = self.graph

        model = Model(g)
        geno = Genotype(g)
        logger.info("Processing Gene Associations from %s", file)
        line_counter = 0

        if 7955 in self.tax_ids:
            zfin = ZFIN(self.graph_type, self.are_bnodes_skized)
        elif 6239 in self.tax_ids:
            wbase = WormBase(self.graph_type, self.are_bnodes_skized)

        with gzip.open(file, 'rb') as csvfile:
            filereader = csv.reader(io.TextIOWrapper(csvfile, newline=""),
                                    delimiter='\t',
                                    quotechar='\"')
            for row in filereader:
                line_counter += 1
                # comments start with exclamation
                if re.match(r'!', ''.join(row)):
                    continue
                (db, gene_num, gene_symbol, qualifier, go_id, ref, eco_symbol,
                 with_or_from, aspect, gene_name, gene_synonym, object_type,
                 taxon, date, assigned_by, annotation_extension,
                 gene_product_form_id) = row

                # test for required fields
                if (db == '' or gene_num == '' or gene_symbol == ''
                        or go_id == '' or ref == '' or eco_symbol == ''
                        or aspect == '' or object_type == '' or taxon == ''
                        or date == '' or assigned_by == ''):
                    logger.error(
                        "Missing required part of annotation " +
                        "on row %d:\n" + '\t'.join(row), line_counter)
                    continue

                # deal with qualifier NOT, contributes_to, colocalizes_with
                if re.search(r'NOT', qualifier):
                    continue

                db = self.clean_db_prefix(db)
                uniprotid = None
                gene_id = None
                if db == 'UniProtKB':
                    mapped_ids = id_map.get(gene_num)
                    if id_map is not None and mapped_ids is not None:
                        if len(mapped_ids) == 1:
                            gene_id = mapped_ids[0]
                            uniprotid = ':'.join((db, gene_num))
                            gene_num = re.sub(r'\w+\:', '', gene_id)
                        elif len(mapped_ids) > 1:
                            # logger.warning(
                            #   "Skipping gene id mapped for >1 gene %s -> %s",
                            #    gene_num, str(mapped_ids))
                            continue
                    else:
                        continue
                elif db == 'MGI':
                    gene_num = re.sub(r'MGI:', '', gene_num)
                    gene_id = ':'.join((db, gene_num))
                    gene_id = re.sub(r'MGI\:MGI\:', 'MGI:', gene_id)
                else:
                    gene_id = ':'.join((db, gene_num))

                if self.testMode \
                        and not(
                            re.match(r'NCBIGene', gene_id) and
                            int(gene_num) in self.test_ids):
                    continue

                model.addClassToGraph(gene_id, gene_symbol)
                if gene_name != '':
                    model.addDescription(gene_id, gene_name)
                if gene_synonym != '':
                    for s in re.split(r'\|', gene_synonym):
                        model.addSynonym(gene_id, s.strip())
                if re.search(r'\|', taxon):
                    # TODO add annotations with >1 taxon
                    logger.info(">1 taxon (%s) on line %d.  skipping", taxon,
                                line_counter)
                else:
                    tax_id = re.sub(r'taxon:', 'NCBITaxon:', taxon)
                    geno.addTaxon(tax_id, gene_id)

                assoc = Assoc(g, self.name)

                assoc.set_subject(gene_id)
                assoc.set_object(go_id)

                eco_id = self.map_go_evidence_code_to_eco(eco_symbol)
                if eco_id is not None:
                    assoc.add_evidence(eco_id)

                refs = re.split(r'\|', ref)
                for r in refs:
                    r = r.strip()
                    if r != '':
                        prefix = re.split(r':', r)[0]
                        r = re.sub(prefix, self.clean_db_prefix(prefix), r)
                        r = re.sub(r'MGI\:MGI\:', 'MGI:', r)
                        ref = Reference(g, r)
                        if re.match(r'PMID', r):
                            ref_type = Reference.ref_types['journal_article']
                            ref.setType(ref_type)
                        ref.addRefToGraph()
                        assoc.add_source(r)

                # TODO add the source of the annotations from assigned by?

                aspect_rel_map = {
                    'P': model.object_properties['involved_in'],  # involved in
                    'F': model.object_properties['enables'],  # enables
                    'C': model.object_properties['part_of']  # part of
                }

                if aspect not in aspect_rel_map:
                    logger.error("Aspect not recognized: %s", aspect)

                rel = aspect_rel_map.get(aspect)
                if aspect == 'F' and re.search(r'contributes_to', qualifier):
                    rel = model.object_properties['contributes_to']
                assoc.set_relationship(rel)
                if uniprotid is not None:
                    assoc.set_description('Mapped from ' + uniprotid)
                # object_type should be one of:
                # protein_complex; protein; transcript; ncRNA; rRNA; tRNA;
                # snRNA; snoRNA; any subtype of ncRNA in the Sequence Ontology.
                # If the precise product type is unknown,
                # gene_product should be used

                assoc.add_association_to_graph()

                # Derive G2P Associations from IMP annotations
                # in version 2.1 Pipe will indicate 'OR'
                # and Comma will indicate 'AND'.
                # in version 2.0, multiple values are separated by pipes
                # where the pipe has been used to mean 'AND'
                if eco_symbol == 'IMP' and with_or_from != '':
                    withitems = re.split(r'\|', with_or_from)
                    phenotypeid = go_id + 'PHENOTYPE'
                    # create phenotype associations
                    for i in withitems:
                        if i == '' or \
                                re.match(
                                    r'(UniProtKB|WBPhenotype|InterPro|HGNC)',
                                    i):
                            logger.warning(
                                "Don't know what having a uniprot id " +
                                "in the 'with' column means of %s", uniprotid)
                            continue
                        i = re.sub(r'MGI\:MGI\:', 'MGI:', i)
                        i = re.sub(r'WB:', 'WormBase:', i)

                        # for worms and fish, they might give a RNAi or MORPH
                        # in these cases make a reagent-targeted gene
                        if re.search('MRPHLNO|CRISPR|TALEN', i):
                            targeted_gene_id = zfin.make_targeted_gene_id(
                                gene_id, i)
                            geno.addReagentTargetedGene(
                                i, gene_id, targeted_gene_id)
                            # TODO PYLINT why is this:
                            # Redefinition of assoc type from
                            # dipper.models.assoc.Association.Assoc to
                            # dipper.models.assoc.G2PAssoc.G2PAssoc
                            assoc = G2PAssoc(g, self.name, targeted_gene_id,
                                             phenotypeid)
                        elif re.search(r'WBRNAi', i):
                            targeted_gene_id = \
                                wbase.make_reagent_targeted_gene_id(
                                    gene_id, i)
                            geno.addReagentTargetedGene(
                                i, gene_id, targeted_gene_id)
                            assoc = G2PAssoc(g, self.name, targeted_gene_id,
                                             phenotypeid)
                        else:
                            assoc = G2PAssoc(g, self.name, i, phenotypeid)
                        for r in refs:
                            r = r.strip()
                            if r != '':
                                prefix = re.split(r':', r)[0]
                                r = re.sub(prefix,
                                           self.clean_db_prefix(prefix), r)
                                r = re.sub(r'MGI\:MGI\:', 'MGI:', r)
                                assoc.add_source(r)
                                # experimental phenotypic evidence
                                assoc.add_evidence("ECO:0000059")
                        assoc.add_association_to_graph()
                        # TODO should the G2PAssoc be
                        # the evidence for the GO assoc?

                if not self.testMode and \
                        limit is not None and line_counter > limit:
                    break

        return