コード例 #1
0
ファイル: test_dti.py プロジェクト: MaurizioMarrale/dipy
def test_predict():
    """
    Test model prediction API
    """
    psphere = get_sphere('symmetric362')
    bvecs = np.concatenate(([[1, 0, 0]], psphere.vertices))
    bvals = np.zeros(len(bvecs)) + 1000
    bvals[0] = 0
    gtab = grad.gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0001], [0.0015, 0.0003, 0.0003]))
    mevecs = [
        np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]),
        np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
    ]
    S = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)

    dm = dti.TensorModel(gtab, 'LS')
    dmfit = dm.fit(S)
    assert_array_almost_equal(dmfit.predict(gtab, S0=100), S)
    assert_array_almost_equal(dm.predict(dmfit.model_params, S0=100), S)

    data, gtab = dsi_voxels()
    dtim = dti.TensorModel(gtab)
    dtif = dtim.fit(data)
    S0 = np.mean(data[..., gtab.b0s_mask], -1)
    p = dtif.predict(gtab, S0)
コード例 #2
0
ファイル: test_dti.py プロジェクト: Jan-Schreiber/dipy
def test_adc():
    """
    Test the implementation of the calculation of apparent diffusion coefficient
    """
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    sphere = create_unit_sphere(4)

    # The ADC in the principal diffusion direction should be equal to the AD in
    # each voxel:

    pdd0 = dtifit.evecs[0,0,0,0]
    sphere_pdd0 = dps.Sphere(x=pdd0[0], y=pdd0[1], z=pdd0[2])
    assert_array_almost_equal(dtifit.adc(sphere_pdd0)[0,0,0],
                            dtifit.ad[0,0,0], decimal=5)


    # Test that it works for cases in which the data is 1D
    dtifit = dm.fit(data[0,0,0])
    sphere_pdd0 = dps.Sphere(x=pdd0[0], y=pdd0[1], z=pdd0[2])
    assert_array_almost_equal(dtifit.adc(sphere_pdd0),
                        dtifit.ad, decimal=5)
コード例 #3
0
def test_adc():
    """
    Test the implementation of the calculation of apparent diffusion
    coefficient
    """
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    # The ADC in the principal diffusion direction should be equal to the AD in
    # each voxel:

    pdd0 = dtifit.evecs[0, 0, 0, 0]
    sphere_pdd0 = dps.Sphere(x=pdd0[0], y=pdd0[1], z=pdd0[2])
    npt.assert_array_almost_equal(dtifit.adc(sphere_pdd0)[0, 0, 0],
                                  dtifit.ad[0, 0, 0],
                                  decimal=5)

    # Test that it works for cases in which the data is 1D
    dtifit = dm.fit(data[0, 0, 0])
    sphere_pdd0 = dps.Sphere(x=pdd0[0], y=pdd0[1], z=pdd0[2])
    npt.assert_array_almost_equal(dtifit.adc(sphere_pdd0),
                                  dtifit.ad,
                                  decimal=5)
コード例 #4
0
def test_multib0_dsi():
    data, gtab = dsi_voxels()
    # Create a new data-set with a b0 measurement:
    new_data = np.concatenate([data, data[..., 0, None]], -1)
    new_bvecs = np.concatenate([gtab.bvecs, np.zeros((1, 3))])
    new_bvals = np.concatenate([gtab.bvals, [0]])
    new_gtab = gradient_table(new_bvals, new_bvecs)
    ds = DiffusionSpectrumModel(new_gtab)
    dsfit = ds.fit(new_data)
    pdf = dsfit.pdf()
    dsfit.odf(default_sphere)
    assert_equal(new_data.shape[:-1] + (17, 17, 17), pdf.shape)
    assert_equal(np.alltrue(np.isreal(pdf)), True)

    # And again, with one more b0 measurement (two in total):
    new_data = np.concatenate([data, data[..., 0, None]], -1)
    new_bvecs = np.concatenate([gtab.bvecs, np.zeros((1, 3))])
    new_bvals = np.concatenate([gtab.bvals, [0]])
    new_gtab = gradient_table(new_bvals, new_bvecs)
    ds = DiffusionSpectrumModel(new_gtab)
    dsfit = ds.fit(new_data)
    pdf = dsfit.pdf()
    dsfit.odf(default_sphere)
    assert_equal(new_data.shape[:-1] + (17, 17, 17), pdf.shape)
    assert_equal(np.alltrue(np.isreal(pdf)), True)
コード例 #5
0
ファイル: test_dti.py プロジェクト: gauvinalexandre/dipy
def test_mask():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    dtifit_w_mask = dm.fit(data, mask=mask)
    # Without a mask it has some value
    assert_(not np.isnan(dtifit.fa[0, 0, 0]))
    # Where mask is False, evals, evecs and fa should all be 0
    assert_array_equal(dtifit_w_mask.evals[~mask], 0)
    assert_array_equal(dtifit_w_mask.evecs[~mask], 0)
    assert_array_equal(dtifit_w_mask.fa[~mask], 0)
    # Except for the one voxel that was selected by the mask:
    assert_almost_equal(dtifit_w_mask.fa[0, 0, 0], dtifit.fa[0, 0, 0])

    # Test with returning S0_hat
    dm = dti.TensorModel(gtab, 'LS', return_S0_hat=True)
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    dtifit_w_mask = dm.fit(data, mask=mask)
    # Without a mask it has some value
    assert_(not np.isnan(dtifit.fa[0, 0, 0]))
    # Where mask is False, evals, evecs and fa should all be 0
    assert_array_equal(dtifit_w_mask.evals[~mask], 0)
    assert_array_equal(dtifit_w_mask.evecs[~mask], 0)
    assert_array_equal(dtifit_w_mask.fa[~mask], 0)
    assert_array_equal(dtifit_w_mask.S0_hat[~mask], 0)
    # Except for the one voxel that was selected by the mask:
    assert_almost_equal(dtifit_w_mask.fa[0, 0, 0], dtifit.fa[0, 0, 0])
    assert_almost_equal(dtifit_w_mask.S0_hat[0, 0, 0], dtifit.S0_hat[0, 0, 0])
コード例 #6
0
ファイル: test_dsi.py プロジェクト: albayenes/dipy
def test_multib0_dsi():
    data, gtab = dsi_voxels()
    # Create a new data-set with a b0 measurement:
    new_data = np.concatenate([data, data[..., 0, None]], -1)
    new_bvecs = np.concatenate([gtab.bvecs, np.zeros((1, 3))])
    new_bvals = np.concatenate([gtab.bvals, [0]])
    new_gtab = gradient_table(new_bvals, new_bvecs)
    ds = DiffusionSpectrumModel(new_gtab)
    sphere = get_sphere('repulsion724')
    dsfit = ds.fit(new_data)
    pdf = dsfit.pdf()
    dsfit.odf(sphere)
    assert_equal(new_data.shape[:-1] + (17, 17, 17), pdf.shape)
    assert_equal(np.alltrue(np.isreal(pdf)), True)

    # And again, with one more b0 measurement (two in total):
    new_data = np.concatenate([data, data[..., 0, None]], -1)
    new_bvecs = np.concatenate([gtab.bvecs, np.zeros((1, 3))])
    new_bvals = np.concatenate([gtab.bvals, [0]])
    new_gtab = gradient_table(new_bvals, new_bvecs)
    ds = DiffusionSpectrumModel(new_gtab)
    dsfit = ds.fit(new_data)
    pdf = dsfit.pdf()
    dsfit.odf(sphere)
    assert_equal(new_data.shape[:-1] + (17, 17, 17), pdf.shape)
    assert_equal(np.alltrue(np.isreal(pdf)), True)
コード例 #7
0
ファイル: test_dti.py プロジェクト: pietroastolfi/dipy
def test_mask():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    dtifit_w_mask = dm.fit(data, mask=mask)
    # Without a mask it has some value
    assert_(not np.isnan(dtifit.fa[0, 0, 0]))
    # Where mask is False, evals, evecs and fa should all be 0
    assert_array_equal(dtifit_w_mask.evals[~mask], 0)
    assert_array_equal(dtifit_w_mask.evecs[~mask], 0)
    assert_array_equal(dtifit_w_mask.fa[~mask], 0)
    # Except for the one voxel that was selected by the mask:
    assert_almost_equal(dtifit_w_mask.fa[0, 0, 0], dtifit.fa[0, 0, 0])

    # Test with returning S0_hat
    dm = dti.TensorModel(gtab, 'LS', return_S0_hat=True)
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    dtifit_w_mask = dm.fit(data, mask=mask)
    # Without a mask it has some value
    assert_(not np.isnan(dtifit.fa[0, 0, 0]))
    # Where mask is False, evals, evecs and fa should all be 0
    assert_array_equal(dtifit_w_mask.evals[~mask], 0)
    assert_array_equal(dtifit_w_mask.evecs[~mask], 0)
    assert_array_equal(dtifit_w_mask.fa[~mask], 0)
    assert_array_equal(dtifit_w_mask.S0_hat[~mask], 0)
    # Except for the one voxel that was selected by the mask:
    assert_almost_equal(dtifit_w_mask.fa[0, 0, 0], dtifit.fa[0, 0, 0])
    assert_almost_equal(dtifit_w_mask.S0_hat[0, 0, 0], dtifit.S0_hat[0, 0, 0])
コード例 #8
0
ファイル: test_sfm.py プロジェクト: MPDean/dipy
def test_design_matrix():
    data, gtab = dpd.dsi_voxels()
    sphere = dpd.get_sphere()
    # Make it with NNLS, so that it gets tested regardless of sklearn
    sparse_fascicle_model = sfm.SparseFascicleModel(gtab, sphere,
                                                    solver='NNLS')
    npt.assert_equal(sparse_fascicle_model.design_matrix.shape,
                     (np.sum(~gtab.b0s_mask), sphere.vertices.shape[0]))
コード例 #9
0
ファイル: test_sfm.py プロジェクト: zhongyi80/dipy
def test_design_matrix():
    data, gtab = dpd.dsi_voxels()
    sphere = dpd.get_sphere()
    # Make it with NNLS, so that it gets tested regardless of sklearn
    sparse_fascicle_model = sfm.SparseFascicleModel(gtab, sphere,
                                                    solver='NNLS')
    npt.assert_equal(sparse_fascicle_model.design_matrix.shape,
                     (np.sum(~gtab.b0s_mask), sphere.vertices.shape[0]))
コード例 #10
0
def test_multivox_dsi():
    data, gtab = dsi_voxels()
    DS = DiffusionSpectrumModel(gtab)

    DSfit = DS.fit(data)
    PDF = DSfit.pdf()
    assert_equal(data.shape[:-1] + (17, 17, 17), PDF.shape)
    assert_equal(np.alltrue(np.isreal(PDF)), True)
コード例 #11
0
ファイル: test_dti.py プロジェクト: JDWarner/dipy
def test_TensorModel():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    dtifit = dm.fit(data[0, 0, 0])
    assert_equal(dtifit.fa < 0.5, True)
    dm = dti.TensorModel(gtab, 'WLS')
    dtifit = dm.fit(data[0, 0, 0])
    assert_equal(dtifit.fa < 0.5, True)
    sphere = create_unit_sphere(4)
    assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
    assert_almost_equal(dtifit.fa, gfa(dtifit.odf(sphere)), 1)

    # Check that the multivoxel case works:
    dtifit = dm.fit(data)
    assert_equal(dtifit.fa.shape, data.shape[:3])

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    #Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    evecs = np.linalg.eigh(tensor)[1]
    #Design Matrix
    X = dti.design_matrix(bvecs, bvals)
    #Signals
    Y = np.exp(np.dot(X,D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1,) + Y.shape

    # Test fitting with different methods: #XXX Add NNLS methods!
    for fit_method in ['OLS', 'WLS']:
        tensor_model = dti.TensorModel(gtab,
                                       fit_method=fit_method)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)

        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg =\
        "Calculation of tensor from Y does not compare to analytical solution")

        assert_almost_equal(tensor_fit.md[0], md)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError,
                  dti.TensorModel,
                  gtab,
                  fit_method='crazy_method')
コード例 #12
0
ファイル: test_dsi.py プロジェクト: albayenes/dipy
def test_multivox_dsi():
    data, gtab = dsi_voxels()
    DS = DiffusionSpectrumModel(gtab)
    get_sphere('symmetric724')

    DSfit = DS.fit(data)
    PDF = DSfit.pdf()
    assert_equal(data.shape[:-1] + (17, 17, 17), PDF.shape)
    assert_equal(np.alltrue(np.isreal(PDF)), True)
コード例 #13
0
ファイル: test_dsi.py プロジェクト: pombredanne/dipy
def test_multivox_dsi():
    data, gtab = dsi_voxels()
    DS = DiffusionSpectrumModel(gtab, "standard")
    sphere = get_sphere("symmetric724")
    DS.direction_finder.config(sphere=sphere, min_separation_angle=25, relative_peak_threshold=0.35)
    DSfit = DS.fit(data)
    PDF = DSfit.pdf()
    assert_equal(data.shape[:-1] + (16, 16, 16), PDF.shape)
    assert_equal(np.alltrue(np.isreal(PDF)), True)
コード例 #14
0
ファイル: test_gqi.py プロジェクト: pombredanne/dipy
def test_mvoxel_gqi():
    data, gtab = dsi_voxels()
    gq = GeneralizedQSamplingModel(gtab, 'standard')
    sphere = get_sphere('symmetric724')
    gq.direction_finder.config(sphere=sphere, 
                                min_separation_angle=25,
                                relative_peak_threshold=.35)
    gqfit = gq.fit(data)
    directions = gqfit.directions
    assert_equal(directions[0, 0, 0].shape[0], 2)
    assert_equal(directions[-1, -1, -1].shape[0], 2)
コード例 #15
0
ファイル: test_dti.py プロジェクト: pombredanne/dipy
def test_mask():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    mask = np.zeros(data.shape[:-1], dtype=bool)
    mask[0, 0, 0] = True
    dtifit = dm.fit(data)
    dtifit_w_mask = dm.fit(data, mask=mask)
    # Without a mask it has some value
    assert_(not np.isnan(dtifit.fa[0, 0, 0]))
    # But with the mask, it's a nan:
    assert_(np.isnan(dtifit_w_mask.fa[0, 0, 1]))
    # Except for the one voxel that was selected by the mask:
    assert_almost_equal(dtifit_w_mask.fa[0, 0, 0], dtifit.fa[0, 0, 0])
コード例 #16
0
ファイル: test_gqi.py プロジェクト: Vincent-Methot/dipy
def test_mvoxel_gqi():
    data, gtab = dsi_voxels()
    sphere = get_sphere('symmetric724')

    gq = GeneralizedQSamplingModel(gtab, 'standard')
    gqfit = gq.fit(data)
    all_odfs = gqfit.odf(sphere)

    # Check that the first and last voxels each have 2 peaks
    odf = all_odfs[0, 0, 0]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
    odf = all_odfs[-1, -1, -1]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
コード例 #17
0
ファイル: test_gqi.py プロジェクト: StongeEtienne/dipy
def test_mvoxel_gqi():
    data, gtab = dsi_voxels()
    sphere = get_sphere('symmetric724')

    gq = GeneralizedQSamplingModel(gtab, 'standard')
    gqfit = gq.fit(data)
    all_odfs = gqfit.odf(sphere)

    # Check that the first and last voxels each have 2 peaks
    odf = all_odfs[0, 0, 0]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
    odf = all_odfs[-1, -1, -1]
    directions, values, indices = peak_directions(odf, sphere, .35, 25)
    assert_equal(directions.shape[0], 2)
コード例 #18
0
ファイル: test_dti.py プロジェクト: gauvinalexandre/dipy
def test_color_fa():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    dmfit = dm.fit(data)
    fa = fractional_anisotropy(dmfit.evals)
    cfa = color_fa(fa, dmfit.evecs)

    fa = np.ones((3, 3, 3))
    # evecs should be of shape (fa, 3, 3)
    evecs = np.zeros(fa.shape + (3, 2))
    npt.assert_raises(ValueError, color_fa, fa, evecs)

    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

    assert_equal(fa.shape, evecs[..., 0, 0].shape)
    assert_equal((3, 3), evecs.shape[-2:])

    # 3D test case
    fa = np.ones((3, 3, 3))
    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    cfa = color_fa(fa, evecs)
    cfa_truth = np.array([1, 0, 0])
    true_cfa = np.reshape(np.tile(cfa_truth, 27), [3, 3, 3, 3])

    assert_array_equal(cfa, true_cfa)

    # 2D test case
    fa = np.ones((3, 3))
    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    cfa = color_fa(fa, evecs)
    cfa_truth = np.array([1, 0, 0])
    true_cfa = np.reshape(np.tile(cfa_truth, 9), [3, 3, 3])

    assert_array_equal(cfa, true_cfa)

    # 1D test case
    fa = np.ones((3))
    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    cfa = color_fa(fa, evecs)
    cfa_truth = np.array([1, 0, 0])
    true_cfa = np.reshape(np.tile(cfa_truth, 3), [3, 3])

    assert_array_equal(cfa, true_cfa)
コード例 #19
0
ファイル: test_dti.py プロジェクト: virenparmar/dipy
def test_color_fa():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    dmfit = dm.fit(data)
    fa = fractional_anisotropy(dmfit.evals)
    cfa = color_fa(fa, dmfit.evecs)

    fa = np.ones((3, 3, 3))
    # evecs should be of shape (fa, 3, 3)
    evecs = np.zeros(fa.shape + (3, 2))
    npt.assert_raises(ValueError, color_fa, fa, evecs)

    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

    assert_equal(fa.shape, evecs[..., 0, 0].shape)
    assert_equal((3, 3), evecs.shape[-2:])

    # 3D test case
    fa = np.ones((3, 3, 3))
    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    cfa = color_fa(fa, evecs)
    cfa_truth = np.array([1, 0, 0])
    true_cfa = np.reshape(np.tile(cfa_truth, 27), [3, 3, 3, 3])

    assert_array_equal(cfa, true_cfa)

    # 2D test case
    fa = np.ones((3, 3))
    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    cfa = color_fa(fa, evecs)
    cfa_truth = np.array([1, 0, 0])
    true_cfa = np.reshape(np.tile(cfa_truth, 9), [3, 3, 3])

    assert_array_equal(cfa, true_cfa)

    # 1D test case
    fa = np.ones((3))
    evecs = np.zeros(fa.shape + (3, 3))
    evecs[..., :, :] = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    cfa = color_fa(fa, evecs)
    cfa_truth = np.array([1, 0, 0])
    true_cfa = np.reshape(np.tile(cfa_truth, 3), [3, 3])

    assert_array_equal(cfa, true_cfa)
コード例 #20
0
ファイル: test_dti.py プロジェクト: Jan-Schreiber/dipy
def test_predict():
    """
    Test model prediction API
    """
    psphere = get_sphere('symmetric362')
    bvecs = np.concatenate(([[1, 0, 0]], psphere.vertices))
    bvals = np.zeros(len(bvecs)) + 1000
    bvals[0] = 0
    gtab = grad.gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0001], [0.0015, 0.0003, 0.0003]))
    mevecs = [ np.array( [ [1, 0, 0], [0, 1, 0], [0, 0, 1] ] ),
               np.array( [ [0, 0, 1], [0, 1, 0], [1, 0, 0] ] ) ]
    S = single_tensor( gtab, 100, mevals[0], mevecs[0], snr=None )

    dm = dti.TensorModel(gtab, 'LS')
    dmfit = dm.fit(S)
    assert_array_almost_equal(dmfit.predict(gtab, S0=100), S)
    assert_array_almost_equal(dm.predict(dmfit.model_params, S0=100), S)

    data, gtab = dsi_voxels()
    dtim = dti.TensorModel(gtab)
    dtif = dtim.fit(data)
    S0 = np.mean(data[...,gtab.b0s_mask], -1)
    p = dtif.predict(gtab, S0)
コード例 #21
0
ファイル: test_dti.py プロジェクト: MarcCote/dipy
def test_tensor_model():
    fdata, fbval, fbvec = get_data('small_25')
    data1 = nib.load(fdata).get_data()
    gtab1 = grad.gradient_table(fbval, fbvec)
    data2, gtab2 = dsi_voxels()
    for data, gtab in zip([data1, data2], [gtab1, gtab2]):
        dm = dti.TensorModel(gtab, 'LS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        dm = dti.TensorModel(gtab, 'WLS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        assert_equal(dtifit.fa > 0, True)
        sphere = create_unit_sphere(4)
        assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
        # Check that the multivoxel case works:
        dtifit = dm.fit(data)

        # Check that it works on signal that has already been normalized to S0:
        dm_to_relative = dti.TensorModel(gtab)
        if np.any(gtab.b0s_mask):
            relative_data = (data[0, 0, 0]/np.mean(data[0, 0, 0,
                                                        gtab.b0s_mask]))

            dtifit_to_relative = dm_to_relative.fit(relative_data)
            npt.assert_almost_equal(dtifit.fa[0, 0, 0], dtifit_to_relative.fa,
                                    decimal=3)

    # And smoke-test that all these operations return sensibly-shaped arrays:
    assert_equal(dtifit.fa.shape, data.shape[:3])
    assert_equal(dtifit.ad.shape, data.shape[:3])
    assert_equal(dtifit.md.shape, data.shape[:3])
    assert_equal(dtifit.rd.shape, data.shape[:3])
    assert_equal(dtifit.trace.shape, data.shape[:3])
    assert_equal(dtifit.mode.shape, data.shape[:3])
    assert_equal(dtifit.linearity.shape, data.shape[:3])
    assert_equal(dtifit.planarity.shape, data.shape[:3])
    assert_equal(dtifit.sphericity.shape, data.shape[:3])

    # Test for the shape of the mask
    assert_raises(ValueError, dm.fit, np.ones((10, 10, 3)), np.ones((3, 3)))

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    # Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    A_squiggle = tensor - (1 / 3.0) * np.trace(tensor) * np.eye(3)
    mode = (3 * np.sqrt(6) * np.linalg.det(A_squiggle /
            np.linalg.norm(A_squiggle)))
    evals_eigh, evecs_eigh = np.linalg.eigh(tensor)
    # Sort according to eigen-value from large to small:
    evecs = evecs_eigh[:, np.argsort(evals_eigh)[::-1]]
    # Check that eigenvalues and eigenvectors are properly sorted through
    # that previous operation:
    for i in range(3):
        assert_array_almost_equal(np.dot(tensor, evecs[:, i]),
                                  evals[i] * evecs[:, i])
    # Design Matrix
    X = dti.design_matrix(gtab)
    # Signals
    Y = np.exp(np.dot(X, D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1,) + Y.shape

    # Test fitting with different methods:
    for fit_method in ['OLS', 'WLS', 'NLLS']:
        tensor_model = dti.TensorModel(gtab,
                                       fit_method=fit_method,
                                       return_S0_hat=True)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)
        assert_array_almost_equal(tensor_fit.S0_hat, b0, decimal=3)
        # Test that the eigenvectors are correct, one-by-one:
        for i in range(3):
            # Eigenvectors have intrinsic sign ambiguity
            # (see
            # http://prod.sandia.gov/techlib/access-control.cgi/2007/076422.pdf)
            # so we need to allow for sign flips. One of the following should
            # always be true:
            assert_(
                    np.all(np.abs(tensor_fit.evecs[0][:, i] -
                                  evecs[:, i]) < 10e-6) or
                    np.all(np.abs(-tensor_fit.evecs[0][:, i] -
                                  evecs[:, i]) < 10e-6))
            # We set a fixed tolerance of 10e-6, similar to array_almost_equal

        err_msg = "Calculation of tensor from Y does not compare to "
        err_msg += "analytical solution"
        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg=err_msg)

        assert_almost_equal(tensor_fit.md[0], md)
        assert_array_almost_equal(tensor_fit.mode, mode, decimal=5)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError,
                  dti.TensorModel,
                  gtab,
                  fit_method='crazy_method')

    # Test custom fit tensor method
    try:
        model = dti.TensorModel(gtab, fit_method=lambda *args, **kwargs: 42)
        fit = model.fit_method()
    except Exception as exc:
        assert False, "TensorModel should accept custom fit methods: %s" % exc
    assert fit == 42, "Custom fit method for TensorModel returned %s." % fit

    # Test multi-voxel data
    data = np.zeros((3, Y.shape[1]))
    # Normal voxel
    data[0] = Y
    # High diffusion voxel, all diffusing weighted signal equal to zero
    data[1, gtab.b0s_mask] = b0
    data[1, ~gtab.b0s_mask] = 0
    # Masked voxel, all data set to zero
    data[2] = 0.

    tensor_model = dti.TensorModel(gtab)
    fit = tensor_model.fit(data)
    assert_array_almost_equal(fit[0].evals, evals)

    # Return S0_test
    tensor_model = dti.TensorModel(gtab, return_S0_hat=True)
    fit = tensor_model.fit(data)
    assert_array_almost_equal(fit[0].evals, evals)
    assert_array_almost_equal(fit[0].S0_hat, b0)

    # Evals should be high for high diffusion voxel
    assert_(all(fit[1].evals > evals[0] * .9))

    # Evals should be zero where data is masked
    assert_array_almost_equal(fit[2].evals, 0.)
コード例 #22
0
ファイル: test_dti.py プロジェクト: virenparmar/dipy
def test_tensor_model():
    fdata, fbval, fbvec = get_data('small_25')
    data1 = nib.load(fdata).get_data()
    gtab1 = grad.gradient_table(fbval, fbvec)
    data2, gtab2 = dsi_voxels()
    for data, gtab in zip([data1, data2], [gtab1, gtab2]):
        dm = dti.TensorModel(gtab, 'LS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        dm = dti.TensorModel(gtab, 'WLS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        assert_equal(dtifit.fa > 0, True)
        sphere = create_unit_sphere(4)
        assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
        # Check that the multivoxel case works:
        dtifit = dm.fit(data)

        # Check that it works on signal that has already been normalized to S0:
        dm_to_relative = dti.TensorModel(gtab)
        if np.any(gtab.b0s_mask):
            relative_data = (data[0, 0, 0]/np.mean(data[0, 0, 0,
                                                        gtab.b0s_mask]))

            dtifit_to_relative = dm_to_relative.fit(relative_data)
            npt.assert_almost_equal(dtifit.fa[0, 0, 0], dtifit_to_relative.fa,
                                    decimal=3)

    # And smoke-test that all these operations return sensibly-shaped arrays:
    assert_equal(dtifit.fa.shape, data.shape[:3])
    assert_equal(dtifit.ad.shape, data.shape[:3])
    assert_equal(dtifit.md.shape, data.shape[:3])
    assert_equal(dtifit.rd.shape, data.shape[:3])
    assert_equal(dtifit.trace.shape, data.shape[:3])
    assert_equal(dtifit.mode.shape, data.shape[:3])
    assert_equal(dtifit.linearity.shape, data.shape[:3])
    assert_equal(dtifit.planarity.shape, data.shape[:3])
    assert_equal(dtifit.sphericity.shape, data.shape[:3])

    # Test for the shape of the mask
    assert_raises(ValueError, dm.fit, np.ones((10, 10, 3)), np.ones((3, 3)))

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    # Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    A_squiggle = tensor - (1 / 3.0) * np.trace(tensor) * np.eye(3)
    mode = (3 * np.sqrt(6) * np.linalg.det(A_squiggle /
            np.linalg.norm(A_squiggle)))
    evals_eigh, evecs_eigh = np.linalg.eigh(tensor)
    # Sort according to eigen-value from large to small:
    evecs = evecs_eigh[:, np.argsort(evals_eigh)[::-1]]
    # Check that eigenvalues and eigenvectors are properly sorted through
    # that previous operation:
    for i in range(3):
        assert_array_almost_equal(np.dot(tensor, evecs[:, i]),
                                  evals[i] * evecs[:, i])
    # Design Matrix
    X = dti.design_matrix(gtab)
    # Signals
    Y = np.exp(np.dot(X, D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1,) + Y.shape

    # Test fitting with different methods:
    for fit_method in ['OLS', 'WLS', 'NLLS']:
        tensor_model = dti.TensorModel(gtab,
                                       fit_method=fit_method,
                                       return_S0_hat=True)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)
        assert_array_almost_equal(tensor_fit.S0_hat, b0, decimal=3)
        # Test that the eigenvectors are correct, one-by-one:
        for i in range(3):
            # Eigenvectors have intrinsic sign ambiguity
            # (see
            # http://prod.sandia.gov/techlib/access-control.cgi/2007/076422.pdf)
            # so we need to allow for sign flips. One of the following should
            # always be true:
            assert_(
                    np.all(np.abs(tensor_fit.evecs[0][:, i] -
                                  evecs[:, i]) < 10e-6) or
                    np.all(np.abs(-tensor_fit.evecs[0][:, i] -
                                  evecs[:, i]) < 10e-6))
            # We set a fixed tolerance of 10e-6, similar to array_almost_equal

        err_msg = "Calculation of tensor from Y does not compare to "
        err_msg += "analytical solution"
        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg=err_msg)

        assert_almost_equal(tensor_fit.md[0], md)
        assert_array_almost_equal(tensor_fit.mode, mode, decimal=5)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError,
                  dti.TensorModel,
                  gtab,
                  fit_method='crazy_method')

    # Test custom fit tensor method
    try:
        model = dti.TensorModel(gtab, fit_method=lambda *args, **kwargs: 42)
        fit = model.fit_method()
    except Exception as exc:
        assert False, "TensorModel should accept custom fit methods: %s" % exc
    assert fit == 42, "Custom fit method for TensorModel returned %s." % fit

    # Test multi-voxel data
    data = np.zeros((3, Y.shape[1]))
    # Normal voxel
    data[0] = Y
    # High diffusion voxel, all diffusing weighted signal equal to zero
    data[1, gtab.b0s_mask] = b0
    data[1, ~gtab.b0s_mask] = 0
    # Masked voxel, all data set to zero
    data[2] = 0.

    tensor_model = dti.TensorModel(gtab)
    fit = tensor_model.fit(data)
    assert_array_almost_equal(fit[0].evals, evals)

    # Return S0_test
    tensor_model = dti.TensorModel(gtab, return_S0_hat=True)
    fit = tensor_model.fit(data)
    assert_array_almost_equal(fit[0].evals, evals)
    assert_array_almost_equal(fit[0].S0_hat, b0)

    # Evals should be high for high diffusion voxel
    assert_(all(fit[1].evals > evals[0] * .9))

    # Evals should be zero where data is masked
    assert_array_almost_equal(fit[2].evals, 0.)
コード例 #23
0
def test_tensor_model():
    fdata, fbval, fbvec = get_data('small_25')
    data1 = nib.load(fdata).get_data()
    gtab1 = grad.gradient_table(fbval, fbvec)
    data2, gtab2 = dsi_voxels()
    for data, gtab in zip([data1, data2], [gtab1, gtab2]):
        dm = dti.TensorModel(gtab, 'LS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        dm = dti.TensorModel(gtab, 'WLS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        assert_equal(dtifit.fa > 0, True)
        sphere = create_unit_sphere(4)
        assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
        # Check that the multivoxel case works:
        dtifit = dm.fit(data)

        # Check that it works on signal that has already been normalized to S0:
        dm_to_relative = dti.TensorModel(gtab)
        if np.any(gtab.b0s_mask):
            relative_data = (data[0, 0, 0] /
                             np.mean(data[0, 0, 0, gtab.b0s_mask]))

            dtifit_to_relative = dm_to_relative.fit(relative_data)
            npt.assert_almost_equal(dtifit.fa[0, 0, 0],
                                    dtifit_to_relative.fa,
                                    decimal=3)

    # And smoke-test that all these operations return sensibly-shaped arrays:
    assert_equal(dtifit.fa.shape, data.shape[:3])
    assert_equal(dtifit.ad.shape, data.shape[:3])
    assert_equal(dtifit.md.shape, data.shape[:3])
    assert_equal(dtifit.rd.shape, data.shape[:3])
    assert_equal(dtifit.trace.shape, data.shape[:3])
    assert_equal(dtifit.mode.shape, data.shape[:3])
    assert_equal(dtifit.linearity.shape, data.shape[:3])
    assert_equal(dtifit.planarity.shape, data.shape[:3])
    assert_equal(dtifit.sphericity.shape, data.shape[:3])

    # Test for the shape of the mask
    assert_raises(ValueError, dm.fit, np.ones((10, 10, 3)), np.ones((3, 3)))

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    # Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    A_squiggle = tensor - (1 / 3.0) * np.trace(tensor) * np.eye(3)
    mode = 3 * np.sqrt(6) * np.linalg.det(
        A_squiggle / np.linalg.norm(A_squiggle))
    evecs = np.linalg.eigh(tensor)[1]
    # Design Matrix
    X = dti.design_matrix(gtab)
    # Signals
    Y = np.exp(np.dot(X, D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1, ) + Y.shape

    # Test fitting with different methods:
    for fit_method in ['OLS', 'WLS', 'NLLS']:
        tensor_model = dti.TensorModel(gtab, fit_method=fit_method)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)

        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg=\
        "Calculation of tensor from Y does not compare to analytical solution")

        assert_almost_equal(tensor_fit.md[0], md)
        assert_array_almost_equal(tensor_fit.mode, mode, decimal=5)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError, dti.TensorModel, gtab, fit_method='crazy_method')

    # Test multi-voxel data
    data = np.zeros((3, Y.shape[1]))
    # Normal voxel
    data[0] = Y
    # High diffusion voxel, all diffusing weighted signal equal to zero
    data[1, gtab.b0s_mask] = b0
    data[1, ~gtab.b0s_mask] = 0
    # Masked voxel, all data set to zero
    data[2] = 0.

    tensor_model = dti.TensorModel(gtab)
    fit = tensor_model.fit(data)
    assert_array_almost_equal(fit[0].evals, evals)

    # Evals should be high for high diffusion voxel
    assert_(all(fit[1].evals > evals[0] * .9))

    # Evals should be zero where data is masked
    assert_array_almost_equal(fit[2].evals, 0.)
コード例 #24
0
def test_TensorModel():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    dtifit = dm.fit(data[0, 0, 0])
    assert_equal(dtifit.fa < 0.5, True)
    dm = dti.TensorModel(gtab, 'WLS')
    dtifit = dm.fit(data[0, 0, 0])
    assert_equal(dtifit.fa < 0.5, True)
    sphere = create_unit_sphere(4)
    assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
    assert_almost_equal(dtifit.fa, gfa(dtifit.odf(sphere)), 1)

    # Check that the multivoxel case works:
    dtifit = dm.fit(data)

    # And smoke-test that all these operations return sensibly-shaped arrays:
    assert_equal(dtifit.fa.shape, data.shape[:3])
    assert_equal(dtifit.ad.shape, data.shape[:3])
    assert_equal(dtifit.md.shape, data.shape[:3])
    assert_equal(dtifit.rd.shape, data.shape[:3])
    assert_equal(dtifit.trace.shape, data.shape[:3])
    assert_equal(dtifit.mode.shape, data.shape[:3])
    assert_equal(dtifit.linearity.shape, data.shape[:3])
    assert_equal(dtifit.planarity.shape, data.shape[:3])
    assert_equal(dtifit.sphericity.shape, data.shape[:3])

    # Test for the shape of the mask
    assert_raises(ValueError, dm.fit, np.ones((10, 10, 3)), np.ones((3, 3)))

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    # Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    A_squiggle = tensor - (1 / 3.0) * np.trace(tensor) * np.eye(3)
    mode = 3 * np.sqrt(6) * np.linalg.det(
        A_squiggle / np.linalg.norm(A_squiggle))
    evecs = np.linalg.eigh(tensor)[1]
    # Design Matrix
    X = dti.design_matrix(gtab)
    # Signals
    Y = np.exp(np.dot(X, D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1, ) + Y.shape

    # Test fitting with different methods:
    for fit_method in ['OLS', 'WLS', 'NLLS']:
        tensor_model = dti.TensorModel(gtab, fit_method=fit_method)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)

        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg=\
        "Calculation of tensor from Y does not compare to analytical solution")

        assert_almost_equal(tensor_fit.md[0], md)
        assert_array_almost_equal(tensor_fit.mode, mode, decimal=5)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError, dti.TensorModel, gtab, fit_method='crazy_method')
コード例 #25
0
ファイル: test_dti.py プロジェクト: Jan-Schreiber/dipy
def test_TensorModel():
    data, gtab = dsi_voxels()
    dm = dti.TensorModel(gtab, 'LS')
    dtifit = dm.fit(data[0, 0, 0])
    assert_equal(dtifit.fa < 0.5, True)
    dm = dti.TensorModel(gtab, 'WLS')
    dtifit = dm.fit(data[0, 0, 0])
    assert_equal(dtifit.fa < 0.5, True)
    sphere = create_unit_sphere(4)
    assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
    assert_almost_equal(dtifit.fa, gfa(dtifit.odf(sphere)), 1)

    # Check that the multivoxel case works:
    dtifit = dm.fit(data)

    # And smoke-test that all these operations return sensibly-shaped arrays:
    assert_equal(dtifit.fa.shape, data.shape[:3])
    assert_equal(dtifit.ad.shape, data.shape[:3])
    assert_equal(dtifit.md.shape, data.shape[:3])
    assert_equal(dtifit.rd.shape, data.shape[:3])
    assert_equal(dtifit.trace.shape, data.shape[:3])
    assert_equal(dtifit.mode.shape, data.shape[:3])
    assert_equal(dtifit.linearity.shape, data.shape[:3])
    assert_equal(dtifit.planarity.shape, data.shape[:3])
    assert_equal(dtifit.sphericity.shape, data.shape[:3])

    # Test for the shape of the mask
    assert_raises(ValueError, dm.fit, np.ones((10, 10, 3)), np.ones((3,3)))

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    # Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    A_squiggle = tensor - (1 / 3.0) * np.trace(tensor) * np.eye(3)
    mode = 3 * np.sqrt(6) * np.linalg.det(A_squiggle / np.linalg.norm(A_squiggle))
    evecs = np.linalg.eigh(tensor)[1]
    # Design Matrix
    X = dti.design_matrix(gtab)
    # Signals
    Y = np.exp(np.dot(X, D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1,) + Y.shape

    # Test fitting with different methods:
    for fit_method in ['OLS', 'WLS', 'NLLS']:
        tensor_model = dti.TensorModel(gtab,
                                       fit_method=fit_method)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)

        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg=\
        "Calculation of tensor from Y does not compare to analytical solution")

        assert_almost_equal(tensor_fit.md[0], md)
        assert_array_almost_equal(tensor_fit.mode, mode, decimal=5)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError,
                  dti.TensorModel,
                  gtab,
                  fit_method='crazy_method')
コード例 #26
0
ファイル: test_dti.py プロジェクト: DALILA2015/dipy
def test_tensor_model():
    fdata, fbval, fbvec = get_data('small_25')
    data1 = nib.load(fdata).get_data()
    gtab1 = grad.gradient_table(fbval, fbvec)
    data2, gtab2 = dsi_voxels()
    for data, gtab in zip([data1, data2], [gtab1, gtab2]):
        dm = dti.TensorModel(gtab, 'LS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        dm = dti.TensorModel(gtab, 'WLS')
        dtifit = dm.fit(data[0, 0, 0])
        assert_equal(dtifit.fa < 0.9, True)
        assert_equal(dtifit.fa > 0, True)
        sphere = create_unit_sphere(4)
        assert_equal(len(dtifit.odf(sphere)), len(sphere.vertices))
        # Check that the multivoxel case works:
        dtifit = dm.fit(data)

        # Check that it works on signal that has already been normalized to S0:
        dm_to_relative = dti.TensorModel(gtab)
        if np.any(gtab.b0s_mask):
            relative_data = (data[0, 0, 0]/np.mean(data[0, 0, 0,
                                                        gtab.b0s_mask]))
        

            dtifit_to_relative = dm_to_relative.fit(relative_data)
            npt.assert_almost_equal(dtifit.fa[0,0,0], dtifit_to_relative.fa,
                                    decimal=3)

    # And smoke-test that all these operations return sensibly-shaped arrays:
    assert_equal(dtifit.fa.shape, data.shape[:3])
    assert_equal(dtifit.ad.shape, data.shape[:3])
    assert_equal(dtifit.md.shape, data.shape[:3])
    assert_equal(dtifit.rd.shape, data.shape[:3])
    assert_equal(dtifit.trace.shape, data.shape[:3])
    assert_equal(dtifit.mode.shape, data.shape[:3])
    assert_equal(dtifit.linearity.shape, data.shape[:3])
    assert_equal(dtifit.planarity.shape, data.shape[:3])
    assert_equal(dtifit.sphericity.shape, data.shape[:3])

    # Test for the shape of the mask
    assert_raises(ValueError, dm.fit, np.ones((10, 10, 3)), np.ones((3,3)))

    # Make some synthetic data
    b0 = 1000.
    bvecs, bvals = read_bvec_file(get_data('55dir_grad.bvec'))
    gtab = grad.gradient_table_from_bvals_bvecs(bvals, bvecs.T)
    # The first b value is 0., so we take the second one:
    B = bvals[1]
    # Scale the eigenvalues and tensor by the B value so the units match
    D = np.array([1., 1., 1., 0., 0., 1., -np.log(b0) * B]) / B
    evals = np.array([2., 1., 0.]) / B
    md = evals.mean()
    tensor = from_lower_triangular(D)
    A_squiggle = tensor - (1 / 3.0) * np.trace(tensor) * np.eye(3)
    mode = 3 * np.sqrt(6) * np.linalg.det(A_squiggle / np.linalg.norm(A_squiggle))
    evecs = np.linalg.eigh(tensor)[1]
    # Design Matrix
    X = dti.design_matrix(gtab)
    # Signals
    Y = np.exp(np.dot(X, D))
    assert_almost_equal(Y[0], b0)
    Y.shape = (-1,) + Y.shape

    # Test fitting with different methods:
    for fit_method in ['OLS', 'WLS', 'NLLS']:
        tensor_model = dti.TensorModel(gtab,
                                       fit_method=fit_method)

        tensor_fit = tensor_model.fit(Y)
        assert_true(tensor_fit.model is tensor_model)
        assert_equal(tensor_fit.shape, Y.shape[:-1])
        assert_array_almost_equal(tensor_fit.evals[0], evals)

        assert_array_almost_equal(tensor_fit.quadratic_form[0], tensor,
                                  err_msg=\
        "Calculation of tensor from Y does not compare to analytical solution")

        assert_almost_equal(tensor_fit.md[0], md)
        assert_array_almost_equal(tensor_fit.mode, mode, decimal=5)
        assert_equal(tensor_fit.directions.shape[-2], 1)
        assert_equal(tensor_fit.directions.shape[-1], 3)

    # Test error-handling:
    assert_raises(ValueError,
                  dti.TensorModel,
                  gtab,
                  fit_method='crazy_method')

    # Test multi-voxel data
    data = np.zeros((3, Y.shape[1]))
    # Normal voxel
    data[0] = Y
    # High diffusion voxel, all diffusing weighted signal equal to zero
    data[1, gtab.b0s_mask] = b0
    data[1, ~gtab.b0s_mask] = 0
    # Masked voxel, all data set to zero
    data[2] = 0.

    tensor_model = dti.TensorModel(gtab)
    fit = tensor_model.fit(data)
    assert_array_almost_equal(fit[0].evals, evals)

    # Evals should be high for high diffusion voxel
    assert_(all(fit[1].evals > evals[0] * .9))

    # Evals should be zero where data is masked
    assert_array_almost_equal(fit[2].evals, 0.)