コード例 #1
0
ファイル: test_local_tracking.py プロジェクト: qytian/dipy
def test_MaximumDeterministicTracker():
    """This tests that the Maximum Deterministic Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.4, .6, 0.]])
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.])] * 30

    mask = (simple_image > 0).astype(float)
    tc = ThresholdTissueClassifier(mask, .5)

    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 90, sphere)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    expected = [np.array([[ 0.,  1.,  0.],
                          [ 1.,  1.,  0.],
                          [ 2.,  1.,  0.],
                          [ 2.,  2.,  0.],
                          [ 2.,  3.,  0.],
                          [ 2.,  4.,  0.],
                          [ 2.,  5.,  0.]]),
                np.array([[ 0.,  1.,  0.],
                          [ 1.,  1.,  0.],
                          [ 2.,  1.,  0.],
                          [ 3.,  1.,  0.],
                          [ 4.,  1.,  0.]])
               ]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    for sl in streamlines:
        dir = ( -sphere.vertices[0] ).copy()
        if not allclose(sl, expected[0]):
            raise AssertionError()

    # The first path is not possible if 90 degree turns are excluded
    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 80, sphere)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[1]))
コード例 #2
0
def test_DeterministicMaximumDirectionGetter():
    # Test the DeterministicMaximumDirectionGetter

    dir = unit_octahedron.vertices[-1].copy()
    point = np.zeros(3)
    N = unit_octahedron.theta.shape[0]

    # No valid direction
    pmf = np.zeros((3, 3, 3, N))
    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 90,
                                                      unit_octahedron)
    state = dg.get_direction(point, dir)
    npt.assert_equal(state, 1)

    # Test BF #1566 - bad condition in DeterministicMaximumDirectionGetter
    pmf = np.zeros((3, 3, 3, N))
    pmf[0, 0, 0, 0] = 1
    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 0,
                                                      unit_octahedron)
    state = dg.get_direction(point, dir)
    npt.assert_equal(state, 1)
コード例 #3
0
ファイル: test_tracking.py プロジェクト: MarcCote/dipy
def test_affine_transformations():
    """This tests that the input affine is properly handled by
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.4, .6, 0.]])
    simple_image = np.array([[0, 0, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.]),
             np.array([2., 4., 0.])]

    expected = [np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [3., 1., 0.],
                          [4., 1., 0.]]),
                np.array([[2., 0., 0.],
                          [2., 1., 0.],
                          [2., 2., 0.],
                          [2., 3., 0.],
                          [2., 4., 0.],
                          [2., 5., 0.]])]

    mask = (simple_image > 0).astype(float)
    tc = BinaryTissueClassifier(mask)

    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 60, sphere,
                                                      pmf_threshold=0.1)

    # TST- bad affine wrong shape
    bad_affine = np.eye(3)
    npt.assert_raises(ValueError, LocalTracking, dg, tc, seeds, bad_affine, 1.)

    # TST - bad affine with shearing
    bad_affine = np.eye(4)
    bad_affine[0, 1] = 1.
    npt.assert_raises(ValueError, LocalTracking, dg, tc, seeds, bad_affine, 1.)

    # TST - identity
    a0 = np.eye(4)
    # TST - affines with positive/negative offsets
    a1 = np.eye(4)
    a1[:3, 3] = [1, 2, 3]
    a2 = np.eye(4)
    a2[:3, 3] = [-2, 0, -1]
    # TST - affine with scaling
    a3 = np.eye(4)
    a3[0, 0] = a3[1, 1] = a3[2, 2] = 8
    # TST - affine with axes inverting (negative value)
    a4 = np.eye(4)
    a4[1, 1] = a4[2, 2] = -1
    # TST - combined affines
    a5 = a1 + a2 + a3
    a5[3, 3] = 1
    # TST - in vivo affine exemple
    # Sometimes data have affines with tiny shear components.
    # For example, the small_101D data-set has some of that:
    fdata, _, _ = get_data('small_101D')
    a6 = nib.load(fdata).affine

    for affine in [a0, a1, a2, a3, a4, a5, a6]:
        lin = affine[:3, :3]
        offset = affine[:3, 3]
        seeds_trans = [np.dot(lin, s) + offset for s in seeds]

        # We compute the voxel size to ajust the step size to one voxel
        voxel_size = np.mean(np.sqrt(np.dot(lin, lin).diagonal()))

        streamlines = LocalTracking(direction_getter=dg,
                                    tissue_classifier=tc,
                                    seeds=seeds_trans,
                                    affine=affine,
                                    step_size=voxel_size,
                                    return_all=True)

        # We apply the inverse affine transformation to the generated
        # streamlines. It should be equals to the expected streamlines
        # (generated with the identity affine matrix).
        affine_inv = np.linalg.inv(affine)
        lin = affine_inv[:3, :3]
        offset = affine_inv[:3, 3]
        streamlines_inv = []
        for line in streamlines:
            streamlines_inv.append([np.dot(pts, lin) + offset for pts in line])

        npt.assert_equal(len(streamlines_inv[0]), len(expected[0]))
        npt.assert_(np.allclose(streamlines_inv[0], expected[0], atol=0.3))
        npt.assert_equal(len(streamlines_inv[1]), len(expected[1]))
        npt.assert_(np.allclose(streamlines_inv[1], expected[1], atol=0.3))
コード例 #4
0
def test_maximum_deterministic_tracker():
    """This tests that the Maximum Deterministic Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.],
                           [.4, .6, 0.]])
    simple_image = np.array([
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 3, 2, 2, 2, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
    ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.])] * 30

    mask = (simple_image > 0).astype(float)
    sc = ThresholdStoppingCriterion(mask, .5)

    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf,
                                                      90,
                                                      sphere,
                                                      pmf_threshold=0.1)
    streamlines = LocalTracking(dg, sc, seeds, np.eye(4), 1.)

    expected = [
        np.array([[0., 1., 0.], [1., 1., 0.], [2., 1., 0.], [2., 2., 0.],
                  [2., 3., 0.], [2., 4., 0.]]),
        np.array([[0., 1., 0.], [1., 1., 0.], [2., 1., 0.], [3., 1., 0.],
                  [4., 1., 0.]]),
        np.array([[0., 1., 0.], [1., 1., 0.], [2., 1., 0.]])
    ]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    for sl in streamlines:
        if not allclose(sl, expected[0]):
            raise AssertionError()

    # The first path is not possible if 90 degree turns are excluded
    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf,
                                                      80,
                                                      sphere,
                                                      pmf_threshold=0.1)
    streamlines = LocalTracking(dg, sc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[1]))

    # Both path are not possible if 90 degree turns are exclude and
    # if pmf_threshold is larger than 0.67. Streamlines should stop at
    # the crossing.
    # 0.4/0.6 < 2/3, multiplying the pmf should not change the ratio
    dg = DeterministicMaximumDirectionGetter.from_pmf(10 * pmf,
                                                      80,
                                                      sphere,
                                                      pmf_threshold=0.67)
    streamlines = LocalTracking(dg, sc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[2]))
コード例 #5
0
def test_affine_transformations():
    """This tests that the input affine is properly handled by
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.4, .6, 0.]])
    simple_image = np.array([[0, 0, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.]),
             np.array([2., 4., 0.])]

    expected = [np.array([[1., 1., 0.],
                          [2., 1., 0.],
                          [3., 1., 0.]]),
                np.array([[2., 1., 0.],
                          [2., 2., 0.],
                          [2., 3., 0.],
                          [2., 4., 0.]])]

    mask = (simple_image > 0).astype(float)
    sc = BinaryStoppingCriterion(mask)

    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 60, sphere,
                                                      pmf_threshold=0.1)

    # TST- bad affine wrong shape
    bad_affine = np.eye(3)
    npt.assert_raises(ValueError, LocalTracking, dg, sc, seeds, bad_affine, 1.)

    # TST - bad affine with shearing
    bad_affine = np.eye(4)
    bad_affine[0, 1] = 1.
    npt.assert_raises(ValueError, LocalTracking, dg, sc, seeds, bad_affine, 1.)

    # TST - bad seeds
    bad_seeds = 1000
    npt.assert_raises(ValueError, LocalTracking, dg, sc, bad_seeds,
                      np.eye(4), 1.)

    # TST - identity
    a0 = np.eye(4)
    # TST - affines with positive/negative offsets
    a1 = np.eye(4)
    a1[:3, 3] = [1, 2, 3]
    a2 = np.eye(4)
    a2[:3, 3] = [-2, 0, -1]
    # TST - affine with scaling
    a3 = np.eye(4)
    a3[0, 0] = a3[1, 1] = a3[2, 2] = 8
    # TST - affine with axes inverting (negative value)
    a4 = np.eye(4)
    a4[1, 1] = a4[2, 2] = -1
    # TST - combined affines
    a5 = a1 + a2 + a3
    a5[3, 3] = 1
    # TST - in vivo affine example
    # Sometimes data have affines with tiny shear components.
    # For example, the small_101D data-set has some of that:
    fdata, _, _ = get_fnames('small_101D')
    a6 = nib.load(fdata).affine

    for affine in [a0, a1, a2, a3, a4, a5, a6]:
        lin = affine[:3, :3]
        offset = affine[:3, 3]
        seeds_trans = [np.dot(lin, s) + offset for s in seeds]

        # We compute the voxel size to adjust the step size to one voxel
        voxel_size = np.mean(np.sqrt(np.dot(lin, lin).diagonal()))

        streamlines = LocalTracking(direction_getter=dg,
                                    stopping_criterion=sc,
                                    seeds=seeds_trans,
                                    affine=affine,
                                    step_size=voxel_size,
                                    return_all=True)

        # We apply the inverse affine transformation to the generated
        # streamlines. It should be equals to the expected streamlines
        # (generated with the identity affine matrix).
        affine_inv = np.linalg.inv(affine)
        lin = affine_inv[:3, :3]
        offset = affine_inv[:3, 3]
        streamlines_inv = []
        for line in streamlines:
            streamlines_inv.append([np.dot(pts, lin) + offset for pts in line])

        npt.assert_equal(len(streamlines_inv[0]), len(expected[0]))
        npt.assert_(np.allclose(streamlines_inv[0], expected[0], atol=0.3))
        npt.assert_equal(len(streamlines_inv[1]), len(expected[1]))
        npt.assert_(np.allclose(streamlines_inv[1], expected[1], atol=0.3))
コード例 #6
0
ファイル: test_tracking.py プロジェクト: StongeEtienne/dipy
def test_maximum_deterministic_tracker():
    """This tests that the Maximum Deterministic Direction Getter plays nice
    LocalTracking and produces reasonable streamlines in a simple example.
    """
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    pmf_lookup = np.array([[0., 0., 1.],
                           [1., 0., 0.],
                           [0., 1., 0.],
                           [.4, .6, 0.]])
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])

    simple_image = simple_image[..., None]
    pmf = pmf_lookup[simple_image]

    seeds = [np.array([1., 1., 0.])] * 30

    mask = (simple_image > 0).astype(float)
    tc = ThresholdTissueClassifier(mask, .5)

    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 90, sphere,
                                                      pmf_threshold=0.1)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    expected = [np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [2., 2., 0.],
                          [2., 3., 0.],
                          [2., 4., 0.]]),
                np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.],
                          [3., 1., 0.],
                          [4., 1., 0.]]),
                np.array([[0., 1., 0.],
                          [1., 1., 0.],
                          [2., 1., 0.]])]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    for sl in streamlines:
        if not allclose(sl, expected[0]):
            raise AssertionError()

    # The first path is not possible if 90 degree turns are excluded
    dg = DeterministicMaximumDirectionGetter.from_pmf(pmf, 80, sphere,
                                                      pmf_threshold=0.1)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[1]))

    # Both path are not possible if 90 degree turns are exclude and
    # if pmf_threshold is larger than 0.67. Streamlines should stop at
    # the crossing.
    # 0.4/0.6 < 2/3, multiplying the pmf should not change the ratio
    dg = DeterministicMaximumDirectionGetter.from_pmf(10*pmf, 80, sphere,
                                                      pmf_threshold=0.67)
    streamlines = LocalTracking(dg, tc, seeds, np.eye(4), 1.)

    for sl in streamlines:
        npt.assert_(np.allclose(sl, expected[2]))