def test_calling_cartesian_laplacian_with_precomputed_matrices( radial_order=4, time_order=2, ut=2e-3, us=np.r_[1e-3, 2e-3, 3e-3]): ind_mat = qtdmri.qtdmri_index_matrix(radial_order, time_order) part4_reg_mat_tau = qtdmri.part4_reg_matrix_tau(ind_mat, 1.) part23_reg_mat_tau = qtdmri.part23_reg_matrix_tau(ind_mat, 1.) part1_reg_mat_tau = qtdmri.part1_reg_matrix_tau(ind_mat, 1.) S_mat, T_mat, U_mat = mapmri.mapmri_STU_reg_matrices(radial_order) laplacian_matrix_precomputed = qtdmri.qtdmri_laplacian_reg_matrix( ind_mat, us, ut, S_mat, T_mat, U_mat, part1_reg_mat_tau, part23_reg_mat_tau, part4_reg_mat_tau) laplacian_matrix_regular = qtdmri.qtdmri_laplacian_reg_matrix( ind_mat, us, ut) assert_array_almost_equal(laplacian_matrix_precomputed, laplacian_matrix_regular)
def test_calling_cartesian_laplacian_with_precomputed_matrices( radial_order=4, time_order=2, ut=2e-3, us=np.r_[1e-3, 2e-3, 3e-3]): ind_mat = qtdmri.qtdmri_index_matrix(radial_order, time_order) part4_reg_mat_tau = qtdmri.part4_reg_matrix_tau(ind_mat, 1.) part23_reg_mat_tau = qtdmri.part23_reg_matrix_tau(ind_mat, 1.) part1_reg_mat_tau = qtdmri.part1_reg_matrix_tau(ind_mat, 1.) S_mat, T_mat, U_mat = mapmri.mapmri_STU_reg_matrices(radial_order) laplacian_matrix_precomputed = qtdmri.qtdmri_laplacian_reg_matrix( ind_mat, us, ut, S_mat, T_mat, U_mat, part1_reg_mat_tau, part23_reg_mat_tau, part4_reg_mat_tau ) laplacian_matrix_regular = qtdmri.qtdmri_laplacian_reg_matrix( ind_mat, us, ut) assert_array_almost_equal(laplacian_matrix_precomputed, laplacian_matrix_regular)
def test_signal_fitting_equality_anisotropic_isotropic(radial_order=6): gtab = get_gtab_taiwan_dsi() l1, l2, l3 = [0.0015, 0.0003, 0.0003] S, _ = generate_signal_crossing(gtab, l1, l2, l3, angle2=60) gridsize = 17 radius_max = 0.02 r_points = mapmri.create_rspace(gridsize, radius_max) tenmodel = dti.TensorModel(gtab) evals = tenmodel.fit(S).evals tau = 1 / (4 * np.pi**2) # estimate isotropic scale factor u0 = mapmri.isotropic_scale_factor(evals * 2 * tau) mu = np.array([u0, u0, u0]) qvals = np.sqrt(gtab.bvals / tau) / (2 * np.pi) q = gtab.bvecs * qvals[:, None] M_aniso = mapmri.mapmri_phi_matrix(radial_order, mu, q) K_aniso = mapmri.mapmri_psi_matrix(radial_order, mu, r_points) M_iso = mapmri.mapmri_isotropic_phi_matrix(radial_order, u0, q) K_iso = mapmri.mapmri_isotropic_psi_matrix(radial_order, u0, r_points) coef_aniso = np.dot(np.linalg.pinv(M_aniso), S) coef_iso = np.dot(np.linalg.pinv(M_iso), S) # test if anisotropic and isotropic implementation produce equal results # if the same isotropic scale factors are used s_fitted_aniso = np.dot(M_aniso, coef_aniso) s_fitted_iso = np.dot(M_iso, coef_iso) assert_array_almost_equal(s_fitted_aniso, s_fitted_iso) # the same test for the PDF pdf_fitted_aniso = np.dot(K_aniso, coef_aniso) pdf_fitted_iso = np.dot(K_iso, coef_iso) assert_array_almost_equal(pdf_fitted_aniso / pdf_fitted_iso, np.ones_like(pdf_fitted_aniso), 3) # test if the implemented version also produces the same result mapm = MapmriModel(gtab, radial_order=radial_order, laplacian_regularization=False, anisotropic_scaling=False) s_fitted_implemented_isotropic = mapm.fit(S).fitted_signal() # normalize non-implemented fitted signal with b0 value s_fitted_aniso_norm = s_fitted_aniso / s_fitted_aniso.max() assert_array_almost_equal(s_fitted_aniso_norm, s_fitted_implemented_isotropic) # test if norm of signal laplacians are the same laplacian_matrix_iso = mapmri.mapmri_isotropic_laplacian_reg_matrix( radial_order, mu[0]) ind_mat = mapmri.mapmri_index_matrix(radial_order) S_mat, T_mat, U_mat = mapmri.mapmri_STU_reg_matrices(radial_order) laplacian_matrix_aniso = mapmri.mapmri_laplacian_reg_matrix( ind_mat, mu, S_mat, T_mat, U_mat) norm_aniso = np.dot(coef_aniso, np.dot(coef_aniso, laplacian_matrix_aniso)) norm_iso = np.dot(coef_iso, np.dot(coef_iso, laplacian_matrix_iso)) assert_almost_equal(norm_iso, norm_aniso)
def test_signal_fitting_equality_anisotropic_isotropic(radial_order=6): gtab = get_gtab_taiwan_dsi() l1, l2, l3 = [0.0015, 0.0003, 0.0003] S, _ = generate_signal_crossing(gtab, l1, l2, l3, angle2=60) gridsize = 17 radius_max = 0.02 r_points = mapmri.create_rspace(gridsize, radius_max) tenmodel = dti.TensorModel(gtab) evals = tenmodel.fit(S).evals tau = 1 / (4 * np.pi ** 2) # estimate isotropic scale factor u0 = mapmri.isotropic_scale_factor(evals * 2 * tau) mu = np.array([u0, u0, u0]) qvals = np.sqrt(gtab.bvals / tau) / (2 * np.pi) q = gtab.bvecs * qvals[:, None] M_aniso = mapmri.mapmri_phi_matrix(radial_order, mu, q) K_aniso = mapmri.mapmri_psi_matrix(radial_order, mu, r_points) M_iso = mapmri.mapmri_isotropic_phi_matrix(radial_order, u0, q) K_iso = mapmri.mapmri_isotropic_psi_matrix(radial_order, u0, r_points) coef_aniso = np.dot(np.linalg.pinv(M_aniso), S) coef_iso = np.dot(np.linalg.pinv(M_iso), S) # test if anisotropic and isotropic implementation produce equal results # if the same isotropic scale factors are used s_fitted_aniso = np.dot(M_aniso, coef_aniso) s_fitted_iso = np.dot(M_iso, coef_iso) assert_array_almost_equal(s_fitted_aniso, s_fitted_iso) # the same test for the PDF pdf_fitted_aniso = np.dot(K_aniso, coef_aniso) pdf_fitted_iso = np.dot(K_iso, coef_iso) assert_array_almost_equal(pdf_fitted_aniso / pdf_fitted_iso, np.ones_like(pdf_fitted_aniso), 3) # test if the implemented version also produces the same result mapm = MapmriModel(gtab, radial_order=radial_order, laplacian_regularization=False, anisotropic_scaling=False) s_fitted_implemented_isotropic = mapm.fit(S).fitted_signal() # normalize non-implemented fitted signal with b0 value s_fitted_aniso_norm = s_fitted_aniso / s_fitted_aniso.max() assert_array_almost_equal(s_fitted_aniso_norm, s_fitted_implemented_isotropic) # test if norm of signal laplacians are the same laplacian_matrix_iso = mapmri.mapmri_isotropic_laplacian_reg_matrix( radial_order, mu[0]) ind_mat = mapmri.mapmri_index_matrix(radial_order) S_mat, T_mat, U_mat = mapmri.mapmri_STU_reg_matrices(radial_order) laplacian_matrix_aniso = mapmri.mapmri_laplacian_reg_matrix( ind_mat, mu, S_mat, T_mat, U_mat) norm_aniso = np.dot(coef_aniso, np.dot(coef_aniso, laplacian_matrix_aniso)) norm_iso = np.dot(coef_iso, np.dot(coef_iso, laplacian_matrix_iso)) assert_almost_equal(norm_iso, norm_aniso)