コード例 #1
0
def test_odf_sh_to_sharp():
    SNR = None
    S0 = 1
    _, fbvals, fbvecs = get_fnames('small_64D')
    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    S, _ = multi_tensor(gtab,
                        mevals,
                        S0,
                        angles=[(10, 0), (100, 0)],
                        fractions=[50, 50],
                        snr=SNR)

    sphere = default_sphere

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:, :, :] = odf_gt[:]

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf_sh = odf_sh_to_sharp(odfs_sh,
                                  sphere,
                                  basis=None,
                                  ratio=3 / 15.,
                                  sh_order=8,
                                  lambda_=1.,
                                  tau=0.1)

        fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
コード例 #2
0
ファイル: test_csdeconv.py プロジェクト: Vincent-Methot/dipy
def test_odf_sh_to_sharp():

    SNR = 100
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    S, sticks = multi_tensor(gtab,
                             mevals,
                             S0,
                             angles=[(10, 0), (100, 0)],
                             fractions=[50, 50],
                             snr=SNR)

    sphere = get_sphere('symmetric724')

    qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:, :, :] = odf_gt[:]

    odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    fodf_sh = odf_sh_to_sharp(odfs_sh,
                              sphere,
                              basis=None,
                              ratio=3 / 15.,
                              sh_order=8,
                              lambda_=1.,
                              tau=1.)

    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
コード例 #3
0
ファイル: test_csdeconv.py プロジェクト: ChantalTax/dipy
def test_odf_sh_to_sharp():

    SNR = None
    S0 = 1

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    S, sticks = multi_tensor(gtab, mevals, S0, angles=[(10, 0), (100, 0)],
                             fractions=[50, 50], snr=SNR)

    sphere = get_sphere('symmetric724')

    qb = QballModel(gtab, sh_order=8, assume_normed=True)

    qbfit = qb.fit(S)
    odf_gt = qbfit.odf(sphere)

    Z = np.linalg.norm(odf_gt)

    odfs_gt = np.zeros((3, 1, 1, odf_gt.shape[0]))
    odfs_gt[:,:,:] = odf_gt[:]

    odfs_sh = sf_to_sh(odfs_gt, sphere, sh_order=8, basis_type=None)

    odfs_sh /= Z

    fodf_sh = odf_sh_to_sharp(odfs_sh, sphere, basis=None, ratio=3 / 15.,
                              sh_order=8, lambda_=1., tau=0.1)

    fodf = sh_to_sf(fodf_sh, sphere, sh_order=8, basis_type=None)

    directions2, _, _ = peak_directions(fodf[0, 0, 0], sphere)

    assert_equal(directions2.shape[0], 2)
コード例 #4
0
ファイル: utils.py プロジェクト: JanMigon/Diffusion-mri
def qball(gtab, data, name, sh_order=4):
    qballmodel = QballModel(gtab, sh_order)

    data_small = data[:, :, 39:40]
    qball_fit = qballmodel.fit(data_small)
    qball_odf = qball_fit.odf(default_sphere)
    odf_spheres = actor.odf_slicer(qball_odf,
                                   sphere=default_sphere,
                                   scale=0.9,
                                   norm=False,
                                   colormap='plasma')

    ren = window.Scene()
    ren.add(odf_spheres)

    print('Saving illustration as qball_odfs_{}.png'.format(
        name))  #data.shape[-1] - 1))
    window.record(ren,
                  out_path='results/qball_odfs_{}.png'.format(name),
                  size=(600, 600))
    return qball_odf, qball_fit.shm_coeff
コード例 #5
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    if not args.not_all:
        args.gfa = args.gfa or 'gfa.nii.gz'
        args.peaks = args.peaks or 'peaks.nii.gz'
        args.peak_indices = args.peak_indices or 'peaks_indices.nii.gz'
        args.sh = args.sh or 'sh.nii.gz'
        args.nufo = args.nufo or 'nufo.nii.gz'
        args.a_power = args.a_power or 'anisotropic_power.nii.gz'

    arglist = [
        args.gfa, args.peaks, args.peak_indices, args.sh, args.nufo,
        args.a_power
    ]
    if args.not_all and not any(arglist):
        parser.error('When using --not_all, you need to specify at least ' +
                     'one file to output.')

    assert_inputs_exist(parser, [args.input, args.bvals, args.bvecs])
    assert_outputs_exists(parser, args, arglist)

    nbr_processes = args.nbr_processes
    parallel = True
    if nbr_processes <= 0:
        nbr_processes = None
    elif nbr_processes == 1:
        parallel = False

    # Load data
    img = nib.load(args.input)
    data = img.get_data()
    affine = img.get_affine()

    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    if bvals.min() != 0:
        if bvals.min() > 20:
            raise ValueError(
                'The minimal bvalue is greater than 20. This is highly '
                'suspicious. Please check your data to ensure everything is '
                'correct.\nValue found: {0}'.format(bvals.min()))
        else:
            logging.warning(
                'Warning: no b=0 image. Setting b0_threshold to '
                'bvals.min() = %s', bvals.min())
            gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())
    else:
        gtab = gradient_table(bvals, bvecs)

    sphere = get_sphere('symmetric724')

    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)

    if args.use_qball:
        model = QballModel(gtab, sh_order=int(args.sh_order), smooth=0.006)
    else:
        model = CsaOdfModel(gtab, sh_order=int(args.sh_order), smooth=0.006)

    odfpeaks = peaks_from_model(model=model,
                                data=data,
                                sphere=sphere,
                                relative_peak_threshold=.5,
                                min_separation_angle=25,
                                mask=mask,
                                return_odf=False,
                                normalize_peaks=True,
                                return_sh=True,
                                sh_order=int(args.sh_order),
                                sh_basis_type=args.basis,
                                npeaks=5,
                                parallel=parallel,
                                nbr_processes=nbr_processes)

    if args.gfa:
        nib.save(nib.Nifti1Image(odfpeaks.gfa.astype(np.float32), affine),
                 args.gfa)

    if args.peaks:
        nib.save(
            nib.Nifti1Image(reshape_peaks_for_visualization(odfpeaks), affine),
            args.peaks)

    if args.peak_indices:
        nib.save(nib.Nifti1Image(odfpeaks.peak_indices, affine),
                 args.peak_indices)

    if args.sh:
        nib.save(
            nib.Nifti1Image(odfpeaks.shm_coeff.astype(np.float32), affine),
            args.sh)

    if args.nufo:
        peaks_count = (odfpeaks.peak_indices > -1).sum(3)
        nib.save(nib.Nifti1Image(peaks_count.astype(np.int32), affine),
                 args.nufo)

    if args.a_power:
        odf_a_power = anisotropic_power(odfpeaks.shm_coeff)
        nib.save(nib.Nifti1Image(odf_a_power.astype(np.float32), affine),
                 args.a_power)
コード例 #6
0
ファイル: csa_odf_example_gfa_sh.py プロジェクト: mdesco/dipy
data_small  = data[20:50,55:85, 38:40]

csamodel = CsaOdfModel(gtab, 4, smooth=0.006)
csa_fit = csamodel.fit(data_small)

sphere = get_sphere('symmetric724')
csa_odf = csa_fit.odf(sphere)
gfa_csa = gfa(csa_odf)

odfs = csa_odf.clip(0)
gfa_csa_wo_zeros = gfa(odfs)

csa_mm = minmax_normalize(odfs) 
gfa_csa_mm = gfa(csa_mm)

qballmodel = QballModel(gtab, 6, smooth=0.006)
qball_fit = qballmodel.fit(data_small)
qball_odf = qball_fit.odf(sphere)
gfa_qball = gfa(qball_odf)
gfa_qball_mm = gfa(minmax_normalize(qball_odf))


print 'Saving GFAs...'
nib.save(nib.Nifti1Image(gfa_qball.astype('float32'), affine), 'gfa.nii.gz')    
nib.save(nib.Nifti1Image(gfa_qball_mm.astype('float32'), affine), 'gfa_mm.nii.gz')    
nib.save(nib.Nifti1Image(gfa_csa.astype('float32'), affine), 'gfa_csa.nii.gz')    
nib.save(nib.Nifti1Image(gfa_csa_wo_zeros.astype('float32'), affine), 'gfa_csa_wo_neg.nii.gz')    
nib.save(nib.Nifti1Image(gfa_csa_mm.astype('float32'), affine), 'gfa_csa_mm.nii.gz')    


コード例 #7
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    if not args.not_all:
        args.gfa = args.gfa or 'gfa.nii.gz'
        args.peaks = args.peaks or 'peaks.nii.gz'
        args.peak_indices = args.peak_indices or 'peaks_indices.nii.gz'
        args.sh = args.sh or 'sh.nii.gz'
        args.nufo = args.nufo or 'nufo.nii.gz'
        args.a_power = args.a_power or 'anisotropic_power.nii.gz'

    arglist = [
        args.gfa, args.peaks, args.peak_indices, args.sh, args.nufo,
        args.a_power
    ]
    if args.not_all and not any(arglist):
        parser.error('When using --not_all, you need to specify at least ' +
                     'one file to output.')

    assert_inputs_exist(parser, [args.in_dwi, args.in_bval, args.in_bvec])
    assert_outputs_exist(parser, args, arglist)
    validate_nbr_processes(parser, args)

    nbr_processes = args.nbr_processes
    parallel = nbr_processes > 1

    # Load data
    img = nib.load(args.in_dwi)
    data = img.get_fdata(dtype=np.float32)

    bvals, bvecs = read_bvals_bvecs(args.in_bval, args.in_bvec)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    check_b0_threshold(args, bvals.min())
    gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())

    sphere = get_sphere('symmetric724')

    mask = None
    if args.mask:
        mask = get_data_as_mask(nib.load(args.mask))

        # Sanity check on shape of mask
        if mask.shape != data.shape[:-1]:
            raise ValueError('Mask shape does not match data shape.')

    if args.use_qball:
        model = QballModel(gtab, sh_order=args.sh_order, smooth=DEFAULT_SMOOTH)
    else:
        model = CsaOdfModel(gtab,
                            sh_order=args.sh_order,
                            smooth=DEFAULT_SMOOTH)

    odfpeaks = peaks_from_model(model=model,
                                data=data,
                                sphere=sphere,
                                relative_peak_threshold=.5,
                                min_separation_angle=25,
                                mask=mask,
                                return_odf=False,
                                normalize_peaks=True,
                                return_sh=True,
                                sh_order=int(args.sh_order),
                                sh_basis_type=args.sh_basis,
                                npeaks=5,
                                parallel=parallel,
                                nbr_processes=nbr_processes)

    if args.gfa:
        nib.save(nib.Nifti1Image(odfpeaks.gfa.astype(np.float32), img.affine),
                 args.gfa)

    if args.peaks:
        nib.save(
            nib.Nifti1Image(reshape_peaks_for_visualization(odfpeaks),
                            img.affine), args.peaks)

    if args.peak_indices:
        nib.save(nib.Nifti1Image(odfpeaks.peak_indices, img.affine),
                 args.peak_indices)

    if args.sh:
        nib.save(
            nib.Nifti1Image(odfpeaks.shm_coeff.astype(np.float32), img.affine),
            args.sh)

    if args.nufo:
        peaks_count = (odfpeaks.peak_indices > -1).sum(3)
        nib.save(nib.Nifti1Image(peaks_count.astype(np.int32), img.affine),
                 args.nufo)

    if args.a_power:
        odf_a_power = anisotropic_power(odfpeaks.shm_coeff)
        nib.save(nib.Nifti1Image(odf_a_power.astype(np.float32), img.affine),
                 args.a_power)
コード例 #8
0
csamodel = CsaOdfModel(gtab, 4, smooth=0.006)
print 'Computing the CSA odf...'
coeff = csamodel._get_shm_coef(data)
print coeff.shape

print 'Computing GFA...'
print np.min(coeff[:,:,:,0]),np.max(coeff[:,:,:,0])
gfa_sh = np.sqrt(1.0 - (coeff[:,:,:,0] ** 2 / ( np.sum(np.square(coeff), axis=3) ) ) )
gfa_sh[np.isnan(gfa_sh)] = 0

print 'Saving nifti...'
nib.save(nib.Nifti1Image(gfa_sh.astype('float32'), affine), 'gfa_full_brain.nii.gz')    
nib.save(nib.Nifti1Image(coeff.astype('float32'), affine), 'csa_odf_sh.nii.gz')


qballmodel = QballModel(gtab, 4, smooth=0.006)
print 'Computing the QBALL odf...'
coeff = qballmodel._get_shm_coef(data)
print coeff.shape

print 'Computing GFA...'
print np.min(coeff[:,:,:,0]),np.max(coeff[:,:,:,0])
gfa_sh = np.sqrt(1.0 - (coeff[:,:,:,0] ** 2 / ( np.sum(np.square(coeff), axis=3) ) ) )
gfa_sh[np.isnan(gfa_sh)] = 0

print 'Saving nifti...'
nib.save(nib.Nifti1Image(gfa_sh.astype('float32'), affine), 'gfa_qball_full_brain.nii.gz')    
nib.save(nib.Nifti1Image(coeff.astype('float32'), affine), 'qball_odf_sh.nii.gz')


opdtmodel = OpdtModel(gtab, 4, smooth=0.006)
コード例 #9
0
ファイル: shm_models_examples.py プロジェクト: mdesco/dipy
#GFA = csafit.gfa
#nib.save(nib.Nifti1Image(GFA.astype('float32'), affine), 'gfa_csa.nii.gz')    
nib.save(nib.Nifti1Image(coeff.astype('float32'), affine), 'csa_odf_sh.nii.gz')


sphere = get_sphere('symmetric724')
odfs = sh_to_sf(coeff[20:50,55:85, 38:39], sphere, order)
if vizu :
    from dipy.viz import fvtk
    r = fvtk.ren()
    fvtk.add(r, fvtk.sphere_funcs(odfs, sphere, colormap='jet'))
    fvtk.show(r)
    fvtk.clear(r)


qballmodel = QballModel(gtab, order, smooth=0.006)
print 'Computing the QBALL odf...'
qballfit  = qballmodel.fit(data) 
coeff   = qballfit._shm_coef

#GFA = qballfit.gfa
# dipy 0.6 compatible
GFA = np.sqrt(1.0 - (coeff[:,:,:,0] ** 2 / ( np.sum(np.square(coeff), axis=3) ) ) )
GFA[np.isnan(GFA)] = 0
nib.save(nib.Nifti1Image(GFA.astype('float32'), affine), 'gfa_qball.nii.gz')    
nib.save(nib.Nifti1Image(coeff.astype('float32'), affine), 'qball_odf_sh.nii.gz')


if vizu :
    odfs = sh_to_sf(coeff[20:50,55:85, 38:39], sphere, order)
    fvtk.add(r, fvtk.sphere_funcs(odfs, sphere, colormap='jet'))