コード例 #1
0
def main(args):
    use_cuda = (len(args.gpuid) >= 1)
    print("{0} GPU(s) are available".format(cuda.device_count()))

    print("======printing args========")
    print(args)
    print("=================================")

    # Load dataset
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        print("Loading bin dataset")
        dataset = data.load_dataset(args.data, splits, args.src_lang,
                                    args.trg_lang, args.fixed_max_len)
        #args.data, splits, args.src_lang, args.trg_lang)
    else:
        print(f"Loading raw text dataset {args.data}")
        dataset = data.load_raw_text_dataset(args.data, splits, args.src_lang,
                                             args.trg_lang, args.fixed_max_len)
        #args.data, splits, args.src_lang, args.trg_lang)
    if args.src_lang is None or args.trg_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.src_lang, args.trg_lang = dataset.src, dataset.dst
    print('| [{}] dictionary: {} types'.format(dataset.src,
                                               len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst,
                                               len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split,
                                           len(dataset.splits[split])))

    g_logging_meters = OrderedDict()
    g_logging_meters['train_loss'] = AverageMeter()
    g_logging_meters['valid_loss'] = AverageMeter()
    g_logging_meters['train_acc'] = AverageMeter()
    g_logging_meters['valid_acc'] = AverageMeter()
    g_logging_meters['bsz'] = AverageMeter()  # sentences per batch

    d_logging_meters = OrderedDict()
    d_logging_meters['train_loss'] = AverageMeter()
    d_logging_meters['valid_loss'] = AverageMeter()
    d_logging_meters['train_acc'] = AverageMeter()
    d_logging_meters['valid_acc'] = AverageMeter()
    d_logging_meters['bsz'] = AverageMeter()  # sentences per batch

    # Set model parameters
    args.encoder_embed_dim = 1000
    args.encoder_layers = 4
    args.encoder_dropout_out = 0
    args.decoder_embed_dim = 1000
    args.decoder_layers = 4
    args.decoder_out_embed_dim = 1000
    args.decoder_dropout_out = 0
    args.bidirectional = False

    # try to load generator model
    g_model_path = 'checkpoints/generator/best_gmodel.pt'
    if not os.path.exists(g_model_path):
        print("Start training generator!")
        train_g(args, dataset)
    assert os.path.exists(g_model_path)
    generator = LSTMModel(args,
                          dataset.src_dict,
                          dataset.dst_dict,
                          use_cuda=use_cuda)
    model_dict = generator.state_dict()
    pretrained_dict = torch.load(g_model_path)
    #print(f"First dict: {pretrained_dict}")
    # 1. filter out unnecessary keys
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in model_dict
    }
    #print(f"Second dict: {pretrained_dict}")
    # 2. overwrite entries in the existing state dict
    model_dict.update(pretrained_dict)
    #print(f"model dict: {model_dict}")
    # 3. load the new state dict
    generator.load_state_dict(model_dict)

    print("Generator has successfully loaded!")

    # try to load discriminator model
    d_model_path = 'checkpoints/discriminator/best_dmodel.pt'
    if not os.path.exists(d_model_path):
        print("Start training discriminator!")
        train_d(args, dataset)
    assert os.path.exists(d_model_path)
    discriminator = Discriminator(args,
                                  dataset.src_dict,
                                  dataset.dst_dict,
                                  use_cuda=use_cuda)
    model_dict = discriminator.state_dict()
    pretrained_dict = torch.load(d_model_path)
    # 1. filter out unnecessary keys
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items() if k in model_dict
    }
    # 2. overwrite entries in the existing state dict
    model_dict.update(pretrained_dict)
    # 3. load the new state dict
    discriminator.load_state_dict(model_dict)

    print("Discriminator has successfully loaded!")

    #return
    print("starting main training loop")

    torch.autograd.set_detect_anomaly(True)

    if use_cuda:
        if torch.cuda.device_count() > 1:
            discriminator = torch.nn.DataParallel(discriminator).cuda()
            generator = torch.nn.DataParallel(generator).cuda()
        else:
            generator.cuda()
            discriminator.cuda()
    else:
        discriminator.cpu()
        generator.cpu()

    # adversarial training checkpoints saving path
    if not os.path.exists('checkpoints/joint'):
        os.makedirs('checkpoints/joint')
    checkpoints_path = 'checkpoints/joint/'

    # define loss function
    g_criterion = torch.nn.NLLLoss(size_average=False,
                                   ignore_index=dataset.dst_dict.pad(),
                                   reduce=True)
    d_criterion = torch.nn.BCEWithLogitsLoss()
    pg_criterion = PGLoss(ignore_index=dataset.dst_dict.pad(),
                          size_average=True,
                          reduce=True)

    # fix discriminator word embedding (as Wu et al. do)
    for p in discriminator.embed_src_tokens.parameters():
        p.requires_grad = False
    for p in discriminator.embed_trg_tokens.parameters():
        p.requires_grad = False

    # define optimizer
    g_optimizer = eval("torch.optim." + args.g_optimizer)(filter(
        lambda x: x.requires_grad, generator.parameters()),
                                                          args.g_learning_rate)

    d_optimizer = eval("torch.optim." + args.d_optimizer)(
        filter(lambda x: x.requires_grad, discriminator.parameters()),
        args.d_learning_rate,
        momentum=args.momentum,
        nesterov=True)

    # start joint training
    best_dev_loss = math.inf
    num_update = 0
    # main training loop
    for epoch_i in range(1, args.epochs + 1):
        logging.info("At {0}-th epoch.".format(epoch_i))

        # seed = args.seed + epoch_i
        # torch.manual_seed(seed)

        max_positions_train = (args.fixed_max_len, args.fixed_max_len)

        # Initialize dataloader, starting at batch_offset
        itr = dataset.train_dataloader(
            'train',
            max_tokens=args.max_tokens,
            max_sentences=args.joint_batch_size,
            max_positions=max_positions_train,
            # seed=seed,
            epoch=epoch_i,
            sample_without_replacement=args.sample_without_replacement,
            sort_by_source_size=(epoch_i <= args.curriculum),
            shard_id=args.distributed_rank,
            num_shards=args.distributed_world_size,
        )

        # reset meters
        for key, val in g_logging_meters.items():
            if val is not None:
                val.reset()
        for key, val in d_logging_meters.items():
            if val is not None:
                val.reset()

        # set training mode
        generator.train()
        discriminator.train()
        update_learning_rate(num_update, 8e4, args.g_learning_rate,
                             args.lr_shrink, g_optimizer)

        for i, sample in enumerate(itr):
            if use_cuda:
                # wrap input tensors in cuda tensors
                sample = utils.make_variable(sample, cuda=cuda)

            ## part I: use gradient policy method to train the generator

            # use policy gradient training when rand > 50%
            rand = random.random()
            if rand >= 0.5:
                # policy gradient training
                generator.decoder.is_testing = True
                sys_out_batch, prediction, _ = generator(sample)
                generator.decoder.is_testing = False
                with torch.no_grad():
                    n_i = sample['net_input']['src_tokens']
                    #print(f"net input:\n{n_i}, pred: \n{prediction}")
                    reward = discriminator(
                        sample['net_input']['src_tokens'],
                        prediction)  # dataset.dst_dict.pad())
                train_trg_batch = sample['target']
                #print(f"sys_out_batch: {sys_out_batch.shape}:\n{sys_out_batch}")
                pg_loss = pg_criterion(sys_out_batch, train_trg_batch, reward,
                                       use_cuda)
                # logging.debug("G policy gradient loss at batch {0}: {1:.3f}, lr={2}".format(i, pg_loss.item(), g_optimizer.param_groups[0]['lr']))
                g_optimizer.zero_grad()
                pg_loss.backward()
                torch.nn.utils.clip_grad_norm(generator.parameters(),
                                              args.clip_norm)
                g_optimizer.step()

                # oracle valid
                _, _, loss = generator(sample)
                sample_size = sample['target'].size(
                    0) if args.sentence_avg else sample['ntokens']
                logging_loss = loss.data / sample_size / math.log(2)
                g_logging_meters['train_loss'].update(logging_loss,
                                                      sample_size)
                logging.debug(
                    "G MLE loss at batch {0}: {1:.3f}, lr={2}".format(
                        i, g_logging_meters['train_loss'].avg,
                        g_optimizer.param_groups[0]['lr']))
            else:
                # MLE training
                #print(f"printing sample: \n{sample}")
                _, _, loss = generator(sample)
                sample_size = sample['target'].size(
                    0) if args.sentence_avg else sample['ntokens']
                nsentences = sample['target'].size(0)
                logging_loss = loss.data / sample_size / math.log(2)
                g_logging_meters['bsz'].update(nsentences)
                g_logging_meters['train_loss'].update(logging_loss,
                                                      sample_size)
                logging.debug(
                    "G MLE loss at batch {0}: {1:.3f}, lr={2}".format(
                        i, g_logging_meters['train_loss'].avg,
                        g_optimizer.param_groups[0]['lr']))
                g_optimizer.zero_grad()
                loss.backward()
                # all-reduce grads and rescale by grad_denom
                for p in generator.parameters():
                    if p.requires_grad:
                        p.grad.data.div_(sample_size)
                torch.nn.utils.clip_grad_norm(generator.parameters(),
                                              args.clip_norm)
                g_optimizer.step()
            num_update += 1

            # part II: train the discriminator
            bsz = sample['target'].size(0)
            src_sentence = sample['net_input']['src_tokens']
            # train with half human-translation and half machine translation

            true_sentence = sample['target']
            true_labels = Variable(
                torch.ones(sample['target'].size(0)).float())

            with torch.no_grad():
                generator.decoder.is_testing = True
                _, prediction, _ = generator(sample)
                generator.decoder.is_testing = False
            fake_sentence = prediction
            fake_labels = Variable(
                torch.zeros(sample['target'].size(0)).float())

            trg_sentence = torch.cat([true_sentence, fake_sentence], dim=0)
            labels = torch.cat([true_labels, fake_labels], dim=0)

            indices = np.random.permutation(2 * bsz)
            trg_sentence = trg_sentence[indices][:bsz]
            labels = labels[indices][:bsz]

            if use_cuda:
                labels = labels.cuda()

            disc_out = discriminator(src_sentence,
                                     trg_sentence)  #, dataset.dst_dict.pad())
            #print(f"disc out: {disc_out.shape}, labels: {labels.shape}")
            #print(f"labels: {labels}")
            d_loss = d_criterion(disc_out, labels.long())
            acc = torch.sum(torch.Sigmoid()
                            (disc_out).round() == labels).float() / len(labels)
            d_logging_meters['train_acc'].update(acc)
            d_logging_meters['train_loss'].update(d_loss)
            # logging.debug("D training loss {0:.3f}, acc {1:.3f} at batch {2}: ".format(d_logging_meters['train_loss'].avg,
            #                                                                            d_logging_meters['train_acc'].avg,
            #                                                                            i))
            d_optimizer.zero_grad()
            d_loss.backward()
            d_optimizer.step()

        # validation
        # set validation mode
        generator.eval()
        discriminator.eval()
        # Initialize dataloader
        max_positions_valid = (args.fixed_max_len, args.fixed_max_len)
        itr = dataset.eval_dataloader(
            'valid',
            max_tokens=args.max_tokens,
            max_sentences=args.joint_batch_size,
            max_positions=max_positions_valid,
            skip_invalid_size_inputs_valid_test=True,
            descending=True,  # largest batch first to warm the caching allocator
            shard_id=args.distributed_rank,
            num_shards=args.distributed_world_size,
        )

        # reset meters
        for key, val in g_logging_meters.items():
            if val is not None:
                val.reset()
        for key, val in d_logging_meters.items():
            if val is not None:
                val.reset()

        for i, sample in enumerate(itr):
            with torch.no_grad():
                if use_cuda:
                    sample['id'] = sample['id'].cuda()
                    sample['net_input']['src_tokens'] = sample['net_input'][
                        'src_tokens'].cuda()
                    sample['net_input']['src_lengths'] = sample['net_input'][
                        'src_lengths'].cuda()
                    sample['net_input']['prev_output_tokens'] = sample[
                        'net_input']['prev_output_tokens'].cuda()
                    sample['target'] = sample['target'].cuda()

                # generator validation
                _, _, loss = generator(sample)
                sample_size = sample['target'].size(
                    0) if args.sentence_avg else sample['ntokens']
                loss = loss / sample_size / math.log(2)
                g_logging_meters['valid_loss'].update(loss, sample_size)
                logging.debug("G dev loss at batch {0}: {1:.3f}".format(
                    i, g_logging_meters['valid_loss'].avg))

                # discriminator validation
                bsz = sample['target'].size(0)
                src_sentence = sample['net_input']['src_tokens']
                # train with half human-translation and half machine translation

                true_sentence = sample['target']
                true_labels = Variable(
                    torch.ones(sample['target'].size(0)).float())

                with torch.no_grad():
                    generator.decoder.is_testing = True
                    _, prediction, _ = generator(sample)
                    generator.decoder.is_testing = False
                fake_sentence = prediction
                fake_labels = Variable(
                    torch.zeros(sample['target'].size(0)).float())

                trg_sentence = torch.cat([true_sentence, fake_sentence], dim=0)
                labels = torch.cat([true_labels, fake_labels], dim=0)

                indices = np.random.permutation(2 * bsz)
                trg_sentence = trg_sentence[indices][:bsz]
                labels = labels[indices][:bsz]

                if use_cuda:
                    labels = labels.cuda()

                disc_out = discriminator(src_sentence, trg_sentence,
                                         dataset.dst_dict.pad())
                d_loss = d_criterion(disc_out, labels)
                acc = torch.sum(torch.Sigmoid()(disc_out).round() ==
                                labels).float() / len(labels)
                d_logging_meters['valid_acc'].update(acc)
                d_logging_meters['valid_loss'].update(d_loss)
                # logging.debug("D dev loss {0:.3f}, acc {1:.3f} at batch {2}".format(d_logging_meters['valid_loss'].avg,
                #                                                                     d_logging_meters['valid_acc'].avg, i))

        torch.save(generator,
                   open(
                       checkpoints_path + "joint_{0:.3f}.epoch_{1}.pt".format(
                           g_logging_meters['valid_loss'].avg, epoch_i), 'wb'),
                   pickle_module=dill)

        if g_logging_meters['valid_loss'].avg < best_dev_loss:
            best_dev_loss = g_logging_meters['valid_loss'].avg
            torch.save(generator,
                       open(checkpoints_path + "best_gmodel.pt", 'wb'),
                       pickle_module=dill)
コード例 #2
0
    def build_model(self):
        if cfg.train.loss_type == cfg.VANILLA:
            self.loss = nn.BCELoss()
        elif cfg.train.loss_type == cfg.WGAN:
            self.loss = lambda logits, labels: torch.mean(logits)

        self.D_global = Discriminator(cfg.dataset.dataset_name)
        self.G_global = Generator(cfg.dataset.dataset_name)

        # Enable cuda if available
        if torch.cuda.is_available():
            self.D_global.cuda()
            self.G_global.cuda()

        # Optimizers
        self.D_global_optimizer = Adam(self.D_global.parameters(),
                                       lr=cfg.train.learning_rate,
                                       betas=(cfg.train.beta1, 0.999))
        self.G_global_optimizer = Adam(self.G_global.parameters(),
                                       lr=cfg.train.learning_rate,
                                       betas=(cfg.train.beta1, 0.999))

        self.D_pairs = []
        self.G_pairs = []
        self.D_pairs_optimizers = []
        self.G_pairs_optimizers = []

        self.D_msg_pairs = []
        self.D_msg_pairs_optimizers = []
        for id in range(1, cfg.train.N_pairs + 1):
            discriminator = Discriminator(cfg.dataset.dataset_name)
            generator = Generator(cfg.dataset.dataset_name)

            # Enable cuda if available
            if torch.cuda.is_available():
                generator.cuda()
                discriminator.cuda()

            self.D_pairs.append(discriminator)
            self.G_pairs.append(generator)

            # Optimizers
            D_optimizer = Adam(discriminator.parameters(),
                               lr=cfg.train.learning_rate,
                               betas=(cfg.train.beta1, 0.999))
            G_optimizer = Adam(generator.parameters(),
                               lr=cfg.train.learning_rate,
                               betas=(cfg.train.beta1, 0.999))

            self.D_pairs_optimizers.append(D_optimizer)
            self.G_pairs_optimizers.append(G_optimizer)

            # create msg Discriminator pair for G_global
            discriminator = Discriminator(cfg.dataset.dataset_name)

            # Enable cuda if available
            if torch.cuda.is_available():
                generator.cuda()
                discriminator.cuda()

            self.D_msg_pairs.append(discriminator)

            # Optimizers
            D_optimizer = Adam(discriminator.parameters(),
                               lr=cfg.train.learning_rate,
                               betas=(cfg.train.beta1, 0.999))

            self.D_msg_pairs_optimizers.append(D_optimizer)

        self.logger = Logger(model_name='DCGAN',
                             data_name='MNIST',
                             logdir=cfg.validation.validation_dir)

        return
コード例 #3
0
discriminator_A = Discriminator()
discriminator_B = Discriminator()

generator_A = generator_A.to(device)
generator_B = generator_B.to(device)
discriminator_A = discriminator_A.to(device)
discriminator_B = discriminator_B.to(device)

if device == 'cuda':
    generator_A = torch.nn.DataParallel(generator_A)
    generator_B = torch.nn.DataParallel(generator_B)
    discriminator_A = torch.nn.DataParallel(discriminator_A)
    discriminator_B = torch.nn.DataParallel(discriminator_B)

chained_gen_params = chain(generator_A.parameters(), generator_B.parameters())
chained_dis_params = chain(discriminator_A.parameters(),
                           discriminator_B.parameters())

optim_gen = torch.optim.Adam(chained_gen_params,
                             lr=LEARNING_RATE,
                             betas=(0.5, 0.999),
                             weight_decay=0.00001)
optim_dis = torch.optim.Adam(chained_dis_params,
                             lr=LEARNING_RATE,
                             betas=(0.5, 0.999),
                             weight_decay=0.00001)

data_size = min(len(data_A), len(data_B))
n_batches = (data_size // BATCH_SIZE)

recon_criterion = nn.MSELoss()
コード例 #4
0
ファイル: train.py プロジェクト: janesjanes/Text-To-Image
class GAN_CLS(object):
    def __init__(self, args, data_loader, SUPERVISED=True):
        """
		args : Arguments
		data_loader = An instance of class DataLoader for loading our dataset in batches
		"""

        self.data_loader = data_loader
        self.num_epochs = args.num_epochs
        self.batch_size = args.batch_size

        self.log_step = args.log_step
        self.sample_step = args.sample_step

        self.log_dir = args.log_dir
        self.checkpoint_dir = args.checkpoint_dir
        self.sample_dir = args.sample_dir
        self.final_model = args.final_model
        self.model_save_step = args.model_save_step

        #self.dataset = args.dataset
        #self.model_name = args.model_name

        self.img_size = args.img_size
        self.z_dim = args.z_dim
        self.text_embed_dim = args.text_embed_dim
        self.text_reduced_dim = args.text_reduced_dim
        self.learning_rate = args.learning_rate
        self.beta1 = args.beta1
        self.beta2 = args.beta2
        self.l1_coeff = args.l1_coeff
        self.resume_epoch = args.resume_epoch
        self.resume_idx = args.resume_idx
        self.SUPERVISED = SUPERVISED

        # Logger setting
        log_name = datetime.datetime.now().strftime('%Y-%m-%d') + '.log'
        self.logger = logging.getLogger('__name__')
        self.logger.setLevel(logging.INFO)
        self.formatter = logging.Formatter(
            '%(asctime)s:%(levelname)s:%(message)s')
        self.file_handler = logging.FileHandler(
            os.path.join(self.log_dir, log_name))
        self.file_handler.setFormatter(self.formatter)
        self.logger.addHandler(self.file_handler)

        self.build_model()

    def smooth_label(self, tensor, offset):
        return tensor + offset

    def dump_imgs(images_Array, name):
        with open('{}.pickle'.format(name), 'wb') as file:
            dump(images_Array, file)

    def build_model(self):
        """ A function of defining following instances :

		-----  Generator
		-----  Discriminator
		-----  Optimizer for Generator
		-----  Optimizer for Discriminator
		-----  Defining Loss functions

		"""

        # ---------------------------------------------------------------------#
        #						1. Network Initialization					   #
        # ---------------------------------------------------------------------#
        self.gen = Generator(batch_size=self.batch_size,
                             img_size=self.img_size,
                             z_dim=self.z_dim,
                             text_embed_dim=self.text_embed_dim,
                             text_reduced_dim=self.text_reduced_dim)

        self.disc = Discriminator(batch_size=self.batch_size,
                                  img_size=self.img_size,
                                  text_embed_dim=self.text_embed_dim,
                                  text_reduced_dim=self.text_reduced_dim)

        self.gen_optim = optim.Adam(self.gen.parameters(),
                                    lr=self.learning_rate,
                                    betas=(self.beta1, self.beta2))

        self.disc_optim = optim.Adam(self.disc.parameters(),
                                     lr=self.learning_rate,
                                     betas=(self.beta1, self.beta2))

        self.cls_gan_optim = optim.Adam(itertools.chain(
            self.gen.parameters(), self.disc.parameters()),
                                        lr=self.learning_rate,
                                        betas=(self.beta1, self.beta2))

        print('-------------  Generator Model Info  ---------------')
        self.print_network(self.gen, 'G')
        print('------------------------------------------------')

        print('-------------  Discriminator Model Info  ---------------')
        self.print_network(self.disc, 'D')
        print('------------------------------------------------')

        self.criterion = nn.BCELoss().cuda()
        # self.CE_loss = nn.CrossEntropyLoss().cuda()
        # self.MSE_loss = nn.MSELoss().cuda()
        self.gen.train()
        self.disc.train()

    def print_network(self, model, name):
        """ A function for printing total number of model parameters """
        num_params = 0
        for p in model.parameters():
            num_params += p.numel()

        print(model)
        print(name)
        print("Total number of parameters: {}".format(num_params))

    def load_checkpoints(self, resume_epoch, idx):
        """Restore the trained generator and discriminator."""
        print('Loading the trained models from epoch {} and iteration {}...'.
              format(resume_epoch, idx))
        G_path = os.path.join(self.checkpoint_dir,
                              '{}-{}-G.ckpt'.format(resume_epoch, idx))
        D_path = os.path.join(self.checkpoint_dir,
                              '{}-{}-D.ckpt'.format(resume_epoch, idx))
        self.gen.load_state_dict(
            torch.load(G_path, map_location=lambda storage, loc: storage))
        self.disc.load_state_dict(
            torch.load(D_path, map_location=lambda storage, loc: storage))

    def train_model(self):

        data_loader = self.data_loader

        start_epoch = 0
        if self.resume_epoch >= 0:
            start_epoch = self.resume_epoch
            self.load_checkpoints(self.resume_epoch, self.resume_idx)

        print('---------------  Model Training Started  ---------------')
        start_time = time.time()

        for epoch in range(start_epoch, self.num_epochs):
            print("Epoch: {}".format(epoch + 1))
            for idx, batch in enumerate(data_loader):
                print("Index: {}".format(idx + 1), end="\t")
                true_imgs = batch['true_imgs']
                true_embed = batch['true_embds']
                false_imgs = batch['false_imgs']

                real_labels = torch.ones(true_imgs.size(0))
                fake_labels = torch.zeros(true_imgs.size(0))

                smooth_real_labels = torch.FloatTensor(
                    self.smooth_label(real_labels.numpy(), -0.1))

                true_imgs = Variable(true_imgs.float()).cuda()
                true_embed = Variable(true_embed.float()).cuda()
                false_imgs = Variable(false_imgs.float()).cuda()

                real_labels = Variable(real_labels).cuda()
                smooth_real_labels = Variable(smooth_real_labels).cuda()
                fake_labels = Variable(fake_labels).cuda()

                # ---------------------------------------------------------------#
                # 					  2. Training the generator                  #
                # ---------------------------------------------------------------#
                self.gen.zero_grad()
                z = Variable(torch.randn(true_imgs.size(0), self.z_dim)).cuda()
                fake_imgs = self.gen.forward(true_embed, z)
                fake_out, fake_logit = self.disc.forward(fake_imgs, true_embed)
                fake_out = Variable(fake_out.data, requires_grad=True).cuda()

                true_out, true_logit = self.disc.forward(true_imgs, true_embed)
                true_out = Variable(true_out.data, requires_grad=True).cuda()

                g_sf = self.criterion(fake_out, real_labels)
                #g_img = self.l1_coeff * nn.L1Loss()(fake_imgs, true_imgs)
                gen_loss = g_sf

                gen_loss.backward()
                self.gen_optim.step()

                # ---------------------------------------------------------------#
                # 					3. Training the discriminator				 #
                # ---------------------------------------------------------------#
                self.disc.zero_grad()
                false_out, false_logit = self.disc.forward(
                    false_imgs, true_embed)
                false_out = Variable(false_out.data, requires_grad=True)

                sr = self.criterion(true_out, smooth_real_labels)
                sw = self.criterion(true_out, fake_labels)
                sf = self.criterion(false_out, smooth_real_labels)

                disc_loss = torch.log(sr) + (torch.log(1 - sw) +
                                             torch.log(1 - sf)) / 2

                disc_loss.backward()
                self.disc_optim.step()

                self.cls_gan_optim.step()

                # Logging
                loss = {}
                loss['G_loss'] = gen_loss.item()
                loss['D_loss'] = disc_loss.item()

                # ---------------------------------------------------------------#
                # 					4. Logging INFO into log_dir				 #
                # ---------------------------------------------------------------#
                log = ""
                if (idx + 1) % self.log_step == 0:
                    end_time = time.time() - start_time
                    end_time = datetime.timedelta(seconds=end_time)
                    log = "Elapsed [{}], Epoch [{}/{}], Idx [{}]".format(
                        end_time, epoch + 1, self.num_epochs, idx)

                for net, loss_value in loss.items():
                    log += "{}: {:.4f}".format(net, loss_value)
                    self.logger.info(log)
                    print(log)
                """
				# ---------------------------------------------------------------#
				# 					5. Saving generated images					 #
				# ---------------------------------------------------------------#
				if (idx + 1) % self.sample_step == 0:
					concat_imgs = torch.cat((true_imgs, fake_imgs), 0)  # ??????????
					concat_imgs = (concat_imgs + 1) / 2
					# out.clamp_(0, 1)
					 
					save_path = os.path.join(self.sample_dir, '{}-{}-images.jpg'.format(epoch, idx + 1))
					# concat_imgs.cpu().detach().numpy()
					self.dump_imgs(concat_imgs.cpu().numpy(), save_path)
					
					#save_image(concat_imgs.data.cpu(), self.sample_dir, nrow=1, padding=0)
					print ('Saved real and fake images into {}...'.format(self.sample_dir))
				"""

                # ---------------------------------------------------------------#
                # 				6. Saving the checkpoints & final model			 #
                # ---------------------------------------------------------------#
                if (idx + 1) % self.model_save_step == 0:
                    G_path = os.path.join(
                        self.checkpoint_dir,
                        '{}-{}-G.ckpt'.format(epoch, idx + 1))
                    D_path = os.path.join(
                        self.checkpoint_dir,
                        '{}-{}-D.ckpt'.format(epoch, idx + 1))
                    torch.save(self.gen.state_dict(), G_path)
                    torch.save(self.disc.state_dict(), D_path)
                    print('Saved model checkpoints into {}...\n'.format(
                        self.checkpoint_dir))

        print('---------------  Model Training Completed  ---------------')
        # Saving final model into final_model directory
        G_path = os.path.join(self.final_model, '{}-G.pth'.format('final'))
        D_path = os.path.join(self.final_model, '{}-D.pth'.format('final'))
        torch.save(self.gen.state_dict(), G_path)
        torch.save(self.disc.state_dict(), D_path)
        print('Saved final model into {}...'.format(self.final_model))
コード例 #5
0
def main(args):
    use_cuda = (len(args.gpuid) >= 1)
    print("{0} GPU(s) are available".format(cuda.device_count()))

    # Load dataset
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(
            args.data, splits, args.src_lang, args.trg_lang, args.fixed_max_len)
    else:
        dataset = data.load_raw_text_dataset(
            args.data, splits, args.src_lang, args.trg_lang, args.fixed_max_len)
    if args.src_lang is None or args.trg_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.src_lang, args.trg_lang = dataset.src, dataset.dst

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))
    
    g_logging_meters = OrderedDict()
    g_logging_meters['train_loss'] = AverageMeter()
    g_logging_meters['valid_loss'] = AverageMeter()
    g_logging_meters['train_acc'] = AverageMeter()
    g_logging_meters['valid_acc'] = AverageMeter()
    g_logging_meters['bsz'] = AverageMeter()  # sentences per batch

    d_logging_meters = OrderedDict()
    d_logging_meters['train_loss'] = AverageMeter()
    d_logging_meters['valid_loss'] = AverageMeter()
    d_logging_meters['train_acc'] = AverageMeter()
    d_logging_meters['valid_acc'] = AverageMeter()
    d_logging_meters['bsz'] = AverageMeter()  # sentences per batch

    # Set model parameters
    args.encoder_embed_dim = 1000
    args.encoder_layers = 2 # 4
    args.encoder_dropout_out = 0
    args.decoder_embed_dim = 1000
    args.decoder_layers = 2 # 4
    args.decoder_out_embed_dim = 1000
    args.decoder_dropout_out = 0
    args.bidirectional = False

    generator = LSTMModel(args, dataset.src_dict, dataset.dst_dict, use_cuda=use_cuda)
    print("Generator loaded successfully!")
    discriminator = Discriminator(args, dataset.src_dict, dataset.dst_dict, use_cuda=use_cuda)
    print("Discriminator loaded successfully!")

    
    if use_cuda:
        if torch.cuda.device_count() > 1:
            discriminator = torch.nn.DataParallel(discriminator).cuda()
            generator = torch.nn.DataParallel(generator).cuda()
        else:
            generator.cuda()
            discriminator.cuda()
    else:
        discriminator.cpu()
        generator.cpu()

    # adversarial training checkpoints saving path
    save_dir = args.save_dir
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    checkpoints_path = save_dir

    # define loss function
    g_criterion = torch.nn.NLLLoss(ignore_index=dataset.dst_dict.pad(), reduction='sum')
    d_criterion = torch.nn.BCELoss()
    pg_criterion = PGLoss(ignore_index=dataset.dst_dict.pad(), size_average=True, reduce=True)

    # fix discriminator word embedding (as Wu et al. do)
    for p in discriminator.embed_src_tokens.parameters():
        p.requires_grad = False
    for p in discriminator.embed_trg_tokens.parameters():
        p.requires_grad = False

    # define optimizer
    g_optimizer = eval("torch.optim." + args.g_optimizer)(filter(lambda x: x.requires_grad,
                                                                 generator.parameters()),
                                                          args.g_learning_rate)

    d_optimizer = eval("torch.optim." + args.d_optimizer)(filter(lambda x: x.requires_grad,
                                                                 discriminator.parameters()),
                                                          args.d_learning_rate,
                                                          momentum=args.momentum,
                                                          nesterov=True)

    # start joint training
    best_dev_loss = math.inf
    num_update = 0
    # main training loop
    for epoch_i in range(1, args.epochs + 1):
        logging.info("At {0}-th epoch.".format(epoch_i))

        seed = args.seed + epoch_i
        torch.manual_seed(seed)

        max_positions_train = (args.fixed_max_len, args.fixed_max_len)

        # Initialize Fader, starting at batch_offset
        trainloader = dataset.train_dataloader(
            'train',
            max_tokens=args.max_tokens,
            max_sentences=args.joint_batch_size,
            max_positions=max_positions_train,
            # seed=seed,
            epoch=epoch_i,
            sample_without_replacement=args.sample_without_replacement,
            sort_by_source_size=(epoch_i <= args.curriculum),
            shard_id=args.distributed_rank,
            num_shards=args.distributed_world_size,
        )

        # reset meters
        for key, val in g_logging_meters.items():
            if val is not None:
                val.reset()
        for key, val in d_logging_meters.items():
            if val is not None:
                val.reset()

        # set training mode

        update_learning_rate(num_update, 8e4, args.g_learning_rate, args.lr_shrink, g_optimizer)

        for i, sample in enumerate(trainloader):
            generator.train()
            discriminator.train()
            if use_cuda:
                # wrap input tensors in cuda tensors
                sample = utils.make_variable(sample, cuda=cuda)

            ## part I: use gradient policy method to train the generator

            # use policy gradient training when random.random() > 50%
            if random.random() >= 0.5:

                print("Policy Gradient Training")
                
                sys_out_batch = generator(sample)  # 64 X 50 X 6632

                out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1))  # (64 * 50) X 6632
                 
                _, prediction = out_batch.topk(1)
                prediction = prediction.squeeze(1)  # 64*50 = 3200
                prediction = torch.reshape(prediction, sample['net_input']['src_tokens'].shape)  # 64 X 50
                
                with torch.no_grad():
                    reward = discriminator(sample['net_input']['src_tokens'], prediction) # 64 X 1

                train_trg_batch = sample['target']  # 64 x 50
                
                pg_loss = pg_criterion(sys_out_batch, train_trg_batch, reward, use_cuda)
                sample_size = sample['target'].size(0) if args.sentence_avg else sample['ntokens']  # 64
                logging_loss = pg_loss / math.log(2)
                g_logging_meters['train_loss'].update(logging_loss.item(), sample_size)
                logging.debug(f"G policy gradient loss at batch {i}: {pg_loss.item():.3f}, lr={g_optimizer.param_groups[0]['lr']}")
                g_optimizer.zero_grad()
                pg_loss.backward()
                torch.nn.utils.clip_grad_norm_(generator.parameters(), args.clip_norm)
                g_optimizer.step()

            else:
                # MLE training
                print("MLE Training")

                sys_out_batch = generator(sample)

                out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1))  # (64 X 50) X 6632

                train_trg_batch = sample['target'].view(-1)  # 64*50 = 3200

                loss = g_criterion(out_batch, train_trg_batch)

                sample_size = sample['target'].size(0) if args.sentence_avg else sample['ntokens']
                nsentences = sample['target'].size(0)
                logging_loss = loss.data / sample_size / math.log(2)
                g_logging_meters['bsz'].update(nsentences)
                g_logging_meters['train_loss'].update(logging_loss, sample_size)
                logging.debug(f"G MLE loss at batch {i}: {g_logging_meters['train_loss'].avg:.3f}, lr={g_optimizer.param_groups[0]['lr']}")
                g_optimizer.zero_grad()
                loss.backward()
                # all-reduce grads and rescale by grad_denom
                for p in generator.parameters():
                    if p.requires_grad:
                        p.grad.data.div_(sample_size)
                torch.nn.utils.clip_grad_norm_(generator.parameters(), args.clip_norm)
                g_optimizer.step()

            num_update += 1


            # part II: train the discriminator
            bsz = sample['target'].size(0)  # batch_size = 64
        
            src_sentence = sample['net_input']['src_tokens']  # 64 x max-len i.e 64 X 50

            # now train with machine translation output i.e generator output
            true_sentence = sample['target'].view(-1)  # 64*50 = 3200
            
            true_labels = Variable(torch.ones(sample['target'].size(0)).float())  # 64 length vector

            with torch.no_grad():
                sys_out_batch = generator(sample)  # 64 X 50 X 6632

            out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1))  # (64 X 50) X 6632
                
            _, prediction = out_batch.topk(1)
            prediction = prediction.squeeze(1)  # 64 * 50 = 6632
            
            fake_labels = Variable(torch.zeros(sample['target'].size(0)).float())  # 64 length vector

            fake_sentence = torch.reshape(prediction, src_sentence.shape)  # 64 X 50

            if use_cuda:
                fake_labels = fake_labels.cuda()
            
            disc_out = discriminator(src_sentence, fake_sentence)  # 64 X 1
            
            d_loss = d_criterion(disc_out.squeeze(1), fake_labels)

            acc = torch.sum(torch.round(disc_out).squeeze(1) == fake_labels).float() / len(fake_labels)

            d_logging_meters['train_acc'].update(acc)
            d_logging_meters['train_loss'].update(d_loss)
            logging.debug(f"D training loss {d_logging_meters['train_loss'].avg:.3f}, acc {d_logging_meters['train_acc'].avg:.3f} at batch {i}")
            d_optimizer.zero_grad()
            d_loss.backward()
            d_optimizer.step()

            if num_update % 5000 == 0:

                # validation
                # set validation mode
                generator.eval()
                discriminator.eval()
                # Initialize dataloader
                max_positions_valid = (args.fixed_max_len, args.fixed_max_len)
                valloader = dataset.eval_dataloader(
                    'valid',
                    max_tokens=args.max_tokens,
                    max_sentences=args.joint_batch_size,
                    max_positions=max_positions_valid,
                    skip_invalid_size_inputs_valid_test=True,
                    descending=True,  # largest batch first to warm the caching allocator
                    shard_id=args.distributed_rank,
                    num_shards=args.distributed_world_size,
                )

                # reset meters
                for key, val in g_logging_meters.items():
                    if val is not None:
                        val.reset()
                for key, val in d_logging_meters.items():
                    if val is not None:
                        val.reset()

                for i, sample in enumerate(valloader):

                    with torch.no_grad():
                        if use_cuda:
                            # wrap input tensors in cuda tensors
                            sample = utils.make_variable(sample, cuda=cuda)

                        # generator validation
                        sys_out_batch = generator(sample)
                        out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1)) # (64 X 50) X 6632
                        dev_trg_batch = sample['target'].view(-1) # 64*50 = 3200

                        loss = g_criterion(out_batch, dev_trg_batch)
                        sample_size = sample['target'].size(0) if args.sentence_avg else sample['ntokens']
                        loss = loss / sample_size / math.log(2)
                        g_logging_meters['valid_loss'].update(loss, sample_size)
                        logging.debug(f"G dev loss at batch {i}: {g_logging_meters['valid_loss'].avg:.3f}")

                        # discriminator validation
                        bsz = sample['target'].size(0)
                        src_sentence = sample['net_input']['src_tokens']
                        # train with half human-translation and half machine translation

                        true_sentence = sample['target']
                        true_labels = Variable(torch.ones(sample['target'].size(0)).float())

                        with torch.no_grad():
                            sys_out_batch = generator(sample)

                        out_batch = sys_out_batch.contiguous().view(-1, sys_out_batch.size(-1)) # (64 X 50) X 6632

                        _,prediction = out_batch.topk(1)
                        prediction = prediction.squeeze(1)  #64 * 50 = 6632

                        fake_labels = Variable(torch.zeros(sample['target'].size(0)).float())

                        fake_sentence = torch.reshape(prediction, src_sentence.shape) # 64 X 50

                        if use_cuda:
                            fake_labels = fake_labels.cuda()

                        disc_out = discriminator(src_sentence, fake_sentence)
                        d_loss = d_criterion(disc_out.squeeze(1), fake_labels)
                        acc = torch.sum(torch.round(disc_out).squeeze(1) == fake_labels).float() / len(fake_labels)
                        d_logging_meters['valid_acc'].update(acc)
                        d_logging_meters['valid_loss'].update(d_loss)
                        logging.debug(f"D dev loss {d_logging_meters['valid_loss'].avg:.3f}, acc {d_logging_meters['valid_acc'].avg:.3f} at batch {i}")

                torch.save(generator,
                           open(checkpoints_path + "/"+f"num_update{num_update}.joint_{g_logging_meters['valid_loss'].avg:.3f}.pt",
                                'wb'), pickle_module=dill)

                if g_logging_meters['valid_loss'].avg < best_dev_loss:
                    best_dev_loss = g_logging_meters['valid_loss'].avg
                    torch.save(generator, open(checkpoints_path +"/"+ "best_gmodel.pt", 'wb'), pickle_module=dill)
コード例 #6
0
ファイル: train.py プロジェクト: senior-sigan/cppn_vae_gan
def train(opt: Options):
    real_label = 1
    fake_label = 0

    netG = Generator(opt)
    netD = Discriminator(opt)
    print(netG)
    print(netD)

    netG.apply(weights_init_g)
    netD.apply(weights_init_d)

    # summary(netD, (opt.c_dim, opt.x_dim, opt.y_dim))

    dataloader = load_data(opt.data_root, opt.x_dim, opt.y_dim, opt.batch_size, opt.workers)

    x, y, r = get_coordinates(x_dim=opt.x_dim, y_dim=opt.y_dim, scale=opt.scale, batch_size=opt.batch_size)

    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2))

    criterion = nn.BCELoss()
    # criterion = nn.L1Loss()

    noise = torch.FloatTensor(opt.batch_size, opt.z_dim)
    ones = torch.ones(opt.batch_size, opt.x_dim * opt.y_dim, 1)
    input_ = torch.FloatTensor(opt.batch_size, opt.c_dim, opt.x_dim, opt.y_dim)
    label = torch.FloatTensor(opt.batch_size, 1)

    input_ = Variable(input_)
    label = Variable(label)
    noise = Variable(noise)

    if opt.use_cuda:
        netG = netG.cuda()
        netD = netD.cuda()
        x = x.cuda()
        y = y.cuda()
        r = r.cuda()
        ones = ones.cuda()
        criterion = criterion.cuda()
        input_ = input_.cuda()
        label = label.cuda()
        noise = noise.cuda()

    noise.data.normal_()
    fixed_seed = torch.bmm(ones, noise.unsqueeze(1))

    def _update_discriminator(data):
        # for p in netD.parameters():
        #     p.requires_grad = True  # to avoid computation
        netD.zero_grad()
        real_cpu, _ = data
        input_.data.copy_(real_cpu)
        label.data.fill_(real_label-0.1)  # use smooth label for discriminator

        output = netD(input_)
        errD_real = criterion(output, label)
        errD_real.backward()
        D_x = output.data.mean()

        # train with fake
        noise.data.normal_()
        seed = torch.bmm(ones, noise.unsqueeze(1))

        fake = netG(x, y, r, seed)
        label.data.fill_(fake_label)
        output = netD(fake.detach())  # add ".detach()" to avoid backprop through G
        errD_fake = criterion(output, label)
        errD_fake.backward()  # gradients for fake/real will be accumulated
        D_G_z1 = output.data.mean()
        errD = errD_real + errD_fake
        optimizerD.step()  # .step() can be called once the gradients are computed

        return fake, D_G_z1, errD, D_x

    def _update_generator(fake):
        # for p in netD.parameters():
        #     p.requires_grad = False  # to avoid computation
        netG.zero_grad()

        label.data.fill_(real_label)  # fake labels are real for generator cost

        output = netD(fake)
        errG = criterion(output, label)
        errG.backward()  # True if backward through the graph for the second time
        D_G_z2 = output.data.mean()
        optimizerG.step()

        return D_G_z2, errG

    def _save_model(epoch):
        os.makedirs(opt.models_root, exist_ok=True)
        if epoch % 1 == 0:
            torch.save(netG.state_dict(), os.path.join(opt.models_root, "G-cppn-wgan-anime_{}.pth".format(epoch)))
            torch.save(netD.state_dict(), os.path.join(opt.models_root, "D-cppn-wgan-anime_{}.pth".format(epoch)))

    def _log(i, epoch, errD, errG, D_x, D_G_z1, D_G_z2, delta_time):
        print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f Elapsed %.2f s'
              % (epoch, opt.iterations, i, len(dataloader), errD.data.item(), errG.data.item(), D_x, D_G_z1, D_G_z2,
                 delta_time))

    def _save_images(i, epoch):
        os.makedirs(opt.images_root, exist_ok=True)
        if i % 100 == 0:
            fake = netG(x, y, r, fixed_seed)
            fname = os.path.join(opt.images_root, "fake_samples_{:02}-{:04}.png".format(epoch, i))
            vutils.save_image(fake.data[0:64, :, :, :], fname, nrow=8)

    def _start():
        print("Start training")
        for epoch in range(opt.iterations):
            for i, data in enumerate(dataloader, 0):
                start_iter = time.time()

                fake, D_G_z1, errD, D_x = _update_discriminator(data)
                D_G_z2, errG = _update_generator(fake)

                end_iter = time.time()

                _log(i, epoch, errD, errG, D_x, D_G_z1, D_G_z2, end_iter - start_iter)
                _save_images(i, epoch)
            _save_model(epoch)

    _start()
コード例 #7
0
####discriminator_model_conf = modelpath_d['discriminator_model_conf']

#print(generator_model)
#print(generator_model)
#print(discriminator_model)


#modelpath_d = torch.load('train-model-16-medical-adversarial/modeladversarial_40_500.pt')
#discriminator_model_pose = modelpath_d['discriminator_model_conf']
#print(generator_model)
#print(generator_model)
#print(discriminator_model)

for params in generator_model.parameters():
    params.requires_grad = False
for params in discriminator_model_pose.parameters():
    params.requires_grad = True
#for params in discriminator_model_conf.parameters():
#    params.requires_grad = True

# Use dataparallel
generator_model = nn.DataParallel(generator_model)
#discriminator_model_conf = nn.DataParallel(discriminator_model_conf)
discriminator_model_pose = nn.DataParallel(discriminator_model_pose)

# Datasets
if args.dataset == 'lsp':
    lsp_train_dataset = LSP(args)
    args.mode = 'val'
    lsp_val_dataset = LSP(args)
# medical    
コード例 #8
0
class BigGAN():
    """Big GAN"""
    def __init__(self, device, dataloader, num_classes, configs):
        self.device = device
        self.dataloader = dataloader
        self.num_classes = num_classes

        # model settings & hyperparams
        # self.total_steps = configs.total_steps
        self.epochs = configs.epochs
        self.d_iters = configs.d_iters
        self.g_iters = configs.g_iters
        self.batch_size = configs.batch_size
        self.imsize = configs.imsize
        self.nz = configs.nz
        self.ngf = configs.ngf
        self.ndf = configs.ndf
        self.g_lr = configs.g_lr
        self.d_lr = configs.d_lr
        self.beta1 = configs.beta1
        self.beta2 = configs.beta2

        # instance noise
        self.inst_noise_sigma = configs.inst_noise_sigma
        self.inst_noise_sigma_iters = configs.inst_noise_sigma_iters

        # model logging and saving
        self.log_step = configs.log_step
        self.save_epoch = configs.save_epoch
        self.model_path = configs.model_path
        self.sample_path = configs.sample_path

        # pretrained
        self.pretrained_model = configs.pretrained_model

        # building
        self.build_model()

        # archive of all losses
        self.ave_d_losses = []
        self.ave_d_losses_real = []
        self.ave_d_losses_fake = []
        self.ave_g_losses = []

        if self.pretrained_model:
            self.load_pretrained()

    def build_model(self):
        """Initiate Generator and Discriminator"""
        self.G = Generator(self.nz, self.ngf, self.num_classes).to(self.device)
        self.D = Discriminator(self.ndf, self.num_classes).to(self.device)

        self.g_optimizer = optim.Adam(
            filter(lambda p: p.requires_grad, self.G.parameters()), self.g_lr,
            [self.beta1, self.beta2])
        self.d_optimizer = optim.Adam(
            filter(lambda p: p.requires_grad, self.D.parameters()), self.d_lr,
            [self.beta1, self.beta2])

        print("Generator Parameters: ", parameters(self.G))
        print(self.G)
        print("Discriminator Parameters: ", parameters(self.D))
        print(self.D)
        print("Number of classes: ", self.num_classes)

    def load_pretrained(self):
        """Loading pretrained model"""
        checkpoint = torch.load(
            os.path.join(self.model_path,
                         "{}_biggan.pth".format(self.pretrained_model)))

        # load models
        self.G.load_state_dict(checkpoint["g_state_dict"])
        self.D.load_state_dict(checkpoint["d_state_dict"])

        # load optimizers
        self.g_optimizer.load_state_dict(checkpoint["g_optimizer"])
        self.d_optimizer.load_state_dict(checkpoint["d_optimizer"])

        # load losses
        self.ave_d_losses = checkpoint["ave_d_losses"]
        self.ave_d_losses_real = checkpoint["ave_d_losses_real"]
        self.ave_d_losses_fake = checkpoint["ave_d_losses_fake"]
        self.ave_g_losses = checkpoint["ave_g_losses"]

        print("Loading pretrained models (epoch: {})..!".format(
            self.pretrained_model))

    def reset_grad(self):
        """Reset gradients"""
        self.g_optimizer.zero_grad()
        self.d_optimizer.zero_grad()

    def train(self):
        """Train model"""
        step_per_epoch = len(self.dataloader)
        epochs = self.epochs
        total_steps = epochs * step_per_epoch

        # fixed z and labels for sampling generator images
        fixed_z = tensor2var(torch.randn(self.batch_size, self.nz),
                             device=self.device)
        fixed_labels = tensor2var(torch.from_numpy(
            np.tile(np.arange(self.num_classes), self.batch_size)).long(),
                                  device=self.device)

        print("Initiating Training")
        print("Epochs: {}, Total Steps: {}, Steps/Epoch: {}".format(
            epochs, total_steps, step_per_epoch))

        if self.pretrained_model:
            start_epoch = self.pretrained_model
        else:
            start_epoch = 0

        self.D.train()
        self.G.train()

        # Instance noise - make random noise mean (0) and std for injecting
        inst_noise_mean = torch.full(
            (self.batch_size, 3, self.imsize, self.imsize), 0).to(self.device)
        inst_noise_std = torch.full(
            (self.batch_size, 3, self.imsize, self.imsize),
            self.inst_noise_sigma).to(self.device)

        # total time
        start_time = time.time()
        for epoch in range(start_epoch, epochs):
            # local losses
            d_losses = []
            d_losses_real = []
            d_losses_fake = []
            g_losses = []

            data_iter = iter(self.dataloader)
            for step in range(step_per_epoch):
                # Instance noise std is linearly annealed from self.inst_noise_sigma to 0 thru self.inst_noise_sigma_iters
                inst_noise_sigma_curr = 0 if step > self.inst_noise_sigma_iters else (
                    1 -
                    step / self.inst_noise_sigma_iters) * self.inst_noise_sigma
                inst_noise_std.fill_(inst_noise_sigma_curr)

                # get real images
                real_images, real_labels = next(data_iter)
                real_images = real_images.to(self.device)
                real_labels = real_labels.to(self.device)

                # ================== TRAIN DISCRIMINATOR ================== #

                for _ in range(self.d_iters):
                    self.reset_grad()

                    # TRAIN REAL

                    # creating instance noise
                    inst_noise = torch.normal(mean=inst_noise_mean,
                                              std=inst_noise_std).to(
                                                  self.device)
                    # adding noise to real images
                    d_real = self.D(real_images + inst_noise, real_labels)
                    d_loss_real = loss_hinge_dis_real(d_real)
                    d_loss_real.backward()

                    # delete loss
                    if (step + 1) % self.log_step != 0:
                        del d_real, d_loss_real

                    # TRAIN FAKE

                    # create fake images using latent vector
                    z = tensor2var(torch.randn(real_images.size(0), self.nz),
                                   device=self.device)
                    fake_images = self.G(z, real_labels)

                    # creating instance noise
                    inst_noise = torch.normal(mean=inst_noise_mean,
                                              std=inst_noise_std).to(
                                                  self.device)
                    # adding noise to fake images
                    # detach fake_images tensor from graph
                    d_fake = self.D(fake_images.detach() + inst_noise,
                                    real_labels)
                    d_loss_fake = loss_hinge_dis_fake(d_fake)
                    d_loss_fake.backward()

                    # delete loss, output
                    del fake_images
                    if (step + 1) % self.log_step != 0:
                        del d_fake, d_loss_fake

                # optimize D
                self.d_optimizer.step()

                # ================== TRAIN GENERATOR ================== #

                for _ in range(self.g_iters):
                    self.reset_grad()

                    # create new latent vector
                    z = tensor2var(torch.randn(real_images.size(0), self.nz),
                                   device=self.device)

                    # generate fake images
                    inst_noise = torch.normal(mean=inst_noise_mean,
                                              std=inst_noise_std).to(
                                                  self.device)
                    fake_images = self.G(z, real_labels)
                    g_fake = self.D(fake_images + inst_noise, real_labels)

                    # compute hinge loss for G
                    g_loss = loss_hinge_gen(g_fake)
                    g_loss.backward()

                    del fake_images
                    if (step + 1) % self.log_step != 0:
                        del g_fake, g_loss

                # optimize G
                self.g_optimizer.step()

                # logging step progression
                if (step + 1) % self.log_step == 0:
                    d_loss = d_loss_real + d_loss_fake

                    # logging losses
                    d_losses.append(d_loss.item())
                    d_losses_real.append(d_loss_real.item())
                    d_losses_fake.append(d_loss_fake.item())
                    g_losses.append(g_loss.item())

                    # print out
                    elapsed = time.time() - start_time
                    elapsed = str(datetime.timedelta(seconds=elapsed))
                    print(
                        "Elapsed [{}], Epoch: [{}/{}], Step [{}/{}], g_loss: {:.4f}, d_loss: {:.4f},"
                        " d_loss_real: {:.4f}, d_loss_fake: {:.4f}".format(
                            elapsed, (epoch + 1), epochs, (step + 1),
                            step_per_epoch, g_loss, d_loss, d_loss_real,
                            d_loss_fake))

                    del d_real, d_loss_real, d_fake, d_loss_fake, g_fake, g_loss

            # logging average losses over epoch
            self.ave_d_losses.append(mean(d_losses))
            self.ave_d_losses_real.append(mean(d_losses_real))
            self.ave_d_losses_fake.append(mean(d_losses_fake))
            self.ave_g_losses.append(mean(g_losses))

            # epoch update
            print(
                "Elapsed [{}], Epoch: [{}/{}], ave_g_loss: {:.4f}, ave_d_loss: {:.4f},"
                " ave_d_loss_real: {:.4f}, ave_d_loss_fake: {:.4f},".format(
                    elapsed, epoch + 1, epochs, self.ave_g_losses[epoch],
                    self.ave_d_losses[epoch], self.ave_d_losses_real[epoch],
                    self.ave_d_losses_fake[epoch]))

            # sample images every epoch
            fake_images = self.G(fixed_z, fixed_labels)
            fake_images = denorm(fake_images.data)
            save_image(
                fake_images,
                os.path.join(self.sample_path,
                             "Epoch {}.png".format(epoch + 1)))

            # save model
            if (epoch + 1) % self.save_epoch == 0:
                torch.save(
                    {
                        "g_state_dict": self.G.state_dict(),
                        "d_state_dict": self.D.state_dict(),
                        "g_optimizer": self.g_optimizer.state_dict(),
                        "d_optimizer": self.d_optimizer.state_dict(),
                        "ave_d_losses": self.ave_d_losses,
                        "ave_d_losses_real": self.ave_d_losses_real,
                        "ave_d_losses_fake": self.ave_d_losses_fake,
                        "ave_g_losses": self.ave_g_losses
                    },
                    os.path.join(self.model_path,
                                 "{}_biggan.pth".format(epoch + 1)))

                print("Saving models (epoch {})..!".format(epoch + 1))

    def plot(self):
        plt.plot(self.ave_d_losses)
        plt.plot(self.ave_d_losses_real)
        plt.plot(self.ave_d_losses_fake)
        plt.plot(self.ave_g_losses)
        plt.legend(["d loss", "d real", "d fake", "g loss"], loc="upper left")
        plt.show()
コード例 #9
0
ファイル: train.py プロジェクト: MrVoid918/GAN
            #if epoch_ % 50 == 0 and epoch_ != 0:
            #save_state(save_dir, epoch_, G, D)


if __name__ == "__main__":

    args = parse_args()

    real_label = 1
    fake_label = 0

    if args.device == "gpu":
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    else:
        device = torch.device("cpu")

    data_loader = load_data(args.img_dir, args.img_size, args.batch_size)
    G = Generator(args.img_size, args.norm, args.up_type, device).to(device)
    D = Discriminator(args.img_size, args.norm, args.spectral,
                      args.noise).to(device)
    G.apply(weights_init)
    D.apply(weights_init)

    optimizerD = optim.Adam(D.parameters(), lr=args.D_lr, betas=(0.5, 0.999))
    optimizerG = optim.Adam(G.parameters(), lr=args.G_lr, betas=(0.5, 0.999))

    loss = Loss(args.loss)

    main(args.epoch, device, args.batch_size, loss, G, D, optimizerG,
         optimizerD, data_loader)
コード例 #10
0
ファイル: wgan.py プロジェクト: Qingyan1218/GAN
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size),
             transforms.ToTensor(),
             transforms.Normalize([0.5], [0.5])]    # [] means channel, 0.5,0.5 means mean & std
                                                    # => img = (img - mean) / 0.5 per channel
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.RMSprop(generator.parameters(), lr=opt.lr)
optimizer_D = torch.optim.RMSprop(discriminator.parameters(), lr=opt.lr)

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------

batches_done=0
for epoch in range(opt.n_epochs):
    for i, (imgs, _) in enumerate(dataloader):      # batch id, (image, target)

        # Configure input
        real_imgs = imgs.type(Tensor)

        # -----------------
コード例 #11
0
'''record basic information'''
record('basic info',
       (TMUX + '<br>' + 'train' + '<br>' + 'wgan-gp: ' + str(if_use_wgan_gp)),
       'text')

if torch.cuda.is_available():
    use_cuda = True
    discriminator.cuda()
    generator.cuda()
    one = one.cuda()
    mone = mone.cuda()

loss_function = nn.BCELoss()

if if_use_wgan_gp:
    d_optim = torch.optim.RMSprop(discriminator.parameters(),
                                  lr=1e-4,
                                  eps=1e-5,
                                  alpha=0.99)
    g_optim = torch.optim.RMSprop(generator.parameters(),
                                  lr=1e-4,
                                  eps=1e-5,
                                  alpha=0.99)
else:
    d_optim = torch.optim.Adagrad(discriminator.parameters(), lr=lr)
    g_optim = torch.optim.Adagrad(generator.parameters(), lr=lr)

num_epoch = 120
dataloader = DataLoader(batch_size)
num_batch = int(dataloader.num_batches)  # length of data / batch_size
print(num_batch)
コード例 #12
0
ファイル: main.py プロジェクト: ivan-selchenkov/dcgan
D = Discriminator(conv_size)
G = Generator(z_size, conv_size)

cuda = False

if torch.cuda.is_available():
    cuda = True
    D = D.cuda()
    G = G.cuda()

lr = 0.0002
beta1 = 0.5
beta2 = 0.99

d_optim = optim.Adam(D.parameters(), lr, [beta1, beta2])
g_optim = optim.Adam(G.parameters(), lr, [beta1, beta2])


def train_discriminator(real_images, optimizer, batch_size, z_size):
    optimizer.zero_grad()

    if cuda:
        real_images = real_images.cuda()

    # Loss for real image
    d_real_loss = real_loss(D(real_images), cuda, smooth=True)

    # Loss for fake image
    fake_images = G(generate_z_vector(batch_size, z_size, cuda))
    d_fake_loss = fake_loss(D(fake_images), cuda)
コード例 #13
0
#         # loss = train_generator(generators[i], label_data_iterators[i], gen_criterions[i], gen_optimizers[i])
#         bleu_s = 0#bleu_4(TEXT, corpus, generators[i], g_sequence_len, count=100)
#         print('Epoch [{}], Generator: {}, loss: {}, Perplexity: {}'.format(epoch, generators[i].name, loss, math.exp(loss)))
#     print('-'*25)

exit(0)
d_num_class = len(label_names) + 1
discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim,
                              d_filter_sizes, d_num_filters, d_dropout)
discriminator.embedding.weight.data = TEXT.vocab.vectors
if opt.cuda:
    discriminator = discriminator.cuda()

# Pretrain Discriminator
dis_criterion = nn.NLLLoss(size_average=False)
dis_optimizer = optim.Adam(discriminator.parameters())
if opt.cuda:
    dis_criterion = dis_criterion.cuda()
print('Pretrain Discriminator ...')
for epoch in range(PRE_EPOCH_NUM):
    loss, acc = train_discriminator(discriminator, generators,
                                    real_data_iterator, dis_criterion,
                                    dis_optimizer)
    print('Epoch [{}], loss: {}, accuracy: {}'.format(epoch, loss, acc))

# # Adversarial Training
rollouts = [Rollout(generator, 0.8) for generator in generators]
print('#####################################################')
print('Start Adversarial Training...')
gen_gan_losses = [GANLoss() for _ in generators]
gen_gan_optm = [optim.Adam(generator.parameters()) for generator in generators]
コード例 #14
0
def main(args):
    # log hyperparameter
    print(args)

    # select device
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    device = torch.device("cuda: 0" if args.cuda else "cpu")

    # set random seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # data loader
    transform = transforms.Compose([
        utils.Normalize(),
        utils.ToTensor()
    ])
    train_dataset = TVDataset(
        root=args.root,
        sub_size=args.block_size,
        volume_list=args.volume_train_list,
        max_k=args.training_step,
        train=True,
        transform=transform
    )
    test_dataset = TVDataset(
        root=args.root,
        sub_size=args.block_size,
        volume_list=args.volume_test_list,
        max_k=args.training_step,
        train=False,
        transform=transform
    )

    kwargs = {"num_workers": 4, "pin_memory": True} if args.cuda else {}
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
                              shuffle=True, **kwargs)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
                             shuffle=False, **kwargs)

    # model
    def generator_weights_init(m):
        if isinstance(m, nn.Conv3d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            if m.bias is not None:
                nn.init.zeros_(m.bias)

    def discriminator_weights_init(m):
        if isinstance(m, nn.Conv3d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
            if m.bias is not None:
                nn.init.zeros_(m.bias)

    g_model = Generator(args.upsample_mode, args.forward, args.backward, args.gen_sn, args.residual)
    g_model.apply(generator_weights_init)
    if args.data_parallel and torch.cuda.device_count() > 1:
        g_model = nn.DataParallel(g_model)
    g_model.to(device)

    if args.gan_loss != "none":
        d_model = Discriminator(args.dis_sn)
        d_model.apply(discriminator_weights_init)
        # if args.dis_sn:
        #     d_model = add_sn(d_model)
        if args.data_parallel and torch.cuda.device_count() > 1:
            d_model = nn.DataParallel(d_model)
        d_model.to(device)

    mse_loss = nn.MSELoss()
    adversarial_loss = nn.MSELoss()
    train_losses, test_losses = [], []
    d_losses, g_losses = [], []

    # optimizer
    g_optimizer = optim.Adam(g_model.parameters(), lr=args.lr,
                             betas=(args.beta1, args.beta2))
    if args.gan_loss != "none":
        d_optimizer = optim.Adam(d_model.parameters(), lr=args.d_lr,
                                 betas=(args.beta1, args.beta2))

    Tensor = torch.cuda.FloatTensor if args.cuda else torch.FloatTensor

    # load checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint {}".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint["epoch"]
            g_model.load_state_dict(checkpoint["g_model_state_dict"])
            # g_optimizer.load_state_dict(checkpoint["g_optimizer_state_dict"])
            if args.gan_loss != "none":
                d_model.load_state_dict(checkpoint["d_model_state_dict"])
                # d_optimizer.load_state_dict(checkpoint["d_optimizer_state_dict"])
                d_losses = checkpoint["d_losses"]
                g_losses = checkpoint["g_losses"]
            train_losses = checkpoint["train_losses"]
            test_losses = checkpoint["test_losses"]
            print("=> load chekcpoint {} (epoch {})"
                  .format(args.resume, checkpoint["epoch"]))

    # main loop
    for epoch in tqdm(range(args.start_epoch, args.epochs)):
        # training..
        g_model.train()
        if args.gan_loss != "none":
            d_model.train()
        train_loss = 0.
        volume_loss_part = np.zeros(args.training_step)
        for i, sample in enumerate(train_loader):
            params = list(g_model.named_parameters())
            # pdb.set_trace()
            # params[0][1].register_hook(lambda g: print("{}.grad: {}".format(params[0][0], g)))
            # adversarial ground truths
            real_label = Variable(Tensor(sample["v_i"].shape[0], sample["v_i"].shape[1], 1, 1, 1, 1).fill_(1.0), requires_grad=False)
            fake_label = Variable(Tensor(sample["v_i"].shape[0], sample["v_i"].shape[1], 1, 1, 1, 1).fill_(0.0), requires_grad=False)

            v_f = sample["v_f"].to(device)
            v_b = sample["v_b"].to(device)
            v_i = sample["v_i"].to(device)
            g_optimizer.zero_grad()
            fake_volumes = g_model(v_f, v_b, args.training_step, args.wo_ori_volume, args.norm)

            # adversarial loss
            # update discriminator
            if args.gan_loss != "none":
                avg_d_loss = 0.
                avg_d_loss_real = 0.
                avg_d_loss_fake = 0.
                for k in range(args.n_d):
                    d_optimizer.zero_grad()
                    decisions = d_model(v_i)
                    d_loss_real = adversarial_loss(decisions, real_label)
                    fake_decisions = d_model(fake_volumes.detach())

                    d_loss_fake = adversarial_loss(fake_decisions, fake_label)
                    d_loss = d_loss_real + d_loss_fake
                    d_loss.backward()
                    avg_d_loss += d_loss.item() / args.n_d
                    avg_d_loss_real += d_loss_real / args.n_d
                    avg_d_loss_fake += d_loss_fake / args.n_d

                    d_optimizer.step()

            # update generator
            if args.gan_loss != "none":
                avg_g_loss = 0.
            avg_loss = 0.
            for k in range(args.n_g):
                loss = 0.
                g_optimizer.zero_grad()

                # adversarial loss
                if args.gan_loss != "none":
                    fake_decisions = d_model(fake_volumes)
                    g_loss = args.gan_loss_weight * adversarial_loss(fake_decisions, real_label)
                    loss += g_loss
                    avg_g_loss += g_loss.item() / args.n_g

                # volume loss
                if args.volume_loss:
                    volume_loss = args.volume_loss_weight * mse_loss(v_i, fake_volumes)
                    for j in range(v_i.shape[1]):
                        volume_loss_part[j] += mse_loss(v_i[:, j, :], fake_volumes[:, j, :]) / args.n_g / args.log_every
                    loss += volume_loss

                # feature loss
                if args.feature_loss:
                    feat_real = d_model.extract_features(v_i)
                    feat_fake = d_model.extract_features(fake_volumes)
                    for m in range(len(feat_real)):
                        loss += args.feature_loss_weight / len(feat_real) * mse_loss(feat_real[m], feat_fake[m])

                avg_loss += loss / args.n_g
                loss.backward()
                g_optimizer.step()

            train_loss += avg_loss

            # log training status
            subEpoch = (i + 1) // args.log_every
            if (i+1) % args.log_every == 0:
                print("Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
                    epoch, (i+1) * args.batch_size, len(train_loader.dataset), 100. * (i+1) / len(train_loader),
                    avg_loss
                ))
                print("Volume Loss: ")
                for j in range(volume_loss_part.shape[0]):
                    print("\tintermediate {}: {:.6f}".format(
                        j+1, volume_loss_part[j]
                    ))

                if args.gan_loss != "none":
                    print("DLossReal: {:.6f} DLossFake: {:.6f} DLoss: {:.6f}, GLoss: {:.6f}".format(
                        avg_d_loss_real, avg_d_loss_fake, avg_d_loss, avg_g_loss
                    ))
                    d_losses.append(avg_d_loss)
                    g_losses.append(avg_g_loss)
                # train_losses.append(avg_loss)
                train_losses.append(train_loss.item() / args.log_every)
                print("====> SubEpoch: {} Average loss: {:.6f} Time {}".format(
                    subEpoch, train_loss.item() / args.log_every, time.asctime(time.localtime(time.time()))
                ))
                train_loss = 0.
                volume_loss_part = np.zeros(args.training_step)

            # testing...
            if (i + 1) % args.test_every == 0:
                g_model.eval()
                if args.gan_loss != "none":
                    d_model.eval()
                test_loss = 0.
                with torch.no_grad():
                    for i, sample in enumerate(test_loader):
                        v_f = sample["v_f"].to(device)
                        v_b = sample["v_b"].to(device)
                        v_i = sample["v_i"].to(device)
                        fake_volumes = g_model(v_f, v_b, args.training_step, args.wo_ori_volume, args.norm)
                        test_loss += args.volume_loss_weight * mse_loss(v_i, fake_volumes).item()

                test_losses.append(test_loss * args.batch_size / len(test_loader.dataset))
                print("====> SubEpoch: {} Test set loss {:4f} Time {}".format(
                    subEpoch, test_losses[-1], time.asctime(time.localtime(time.time()))
                ))

            # saving...
            if (i+1) % args.check_every == 0:
                print("=> saving checkpoint at epoch {}".format(epoch))
                if args.gan_loss != "none":
                    torch.save({"epoch": epoch + 1,
                                "g_model_state_dict": g_model.state_dict(),
                                "g_optimizer_state_dict":  g_optimizer.state_dict(),
                                "d_model_state_dict": d_model.state_dict(),
                                "d_optimizer_state_dict": d_optimizer.state_dict(),
                                "d_losses": d_losses,
                                "g_losses": g_losses,
                                "train_losses": train_losses,
                                "test_losses": test_losses},
                               os.path.join(args.save_dir, "model_" + str(epoch) + "_" + str(subEpoch) + "_" + "pth.tar")
                               )
                else:
                    torch.save({"epoch": epoch + 1,
                                "g_model_state_dict": g_model.state_dict(),
                                "g_optimizer_state_dict": g_optimizer.state_dict(),
                                "train_losses": train_losses,
                                "test_losses": test_losses},
                               os.path.join(args.save_dir, "model_" + str(epoch) + "_" + str(subEpoch) + "_" + "pth.tar")
                               )
                torch.save(g_model.state_dict(),
                           os.path.join(args.save_dir, "model_" + str(epoch) + "_" + str(subEpoch) + ".pth"))

        num_subEpoch = len(train_loader) // args.log_every
        print("====> Epoch: {} Average loss: {:.6f} Time {}".format(
            epoch, np.array(train_losses[-num_subEpoch:]).mean(), time.asctime(time.localtime(time.time()))
        ))
コード例 #15
0
parser.add_argument(
    '--retrain',
    action='store_true',
    help='Whether or not to start training from a previous state.')
args = parser.parse_args()

print("Initializing generator model and optimizer.")
g_net = Generator().cuda()
g_opt = optim.RMSprop(g_net.parameters(),
                      args.learning_rate_d,
                      weight_decay=args.rmsprop_decay)
g_losses = np.empty(0)

print("Initializing discriminator model and optimizer.")
d_net = Discriminator().cuda()
d_opt = optim.RMSprop(d_net.parameters(),
                      args.learning_rate_d,
                      weight_decay=args.rmsprop_decay)
d_losses = np.empty(0)

if args.retrain:
    g_net.load_state_dict(torch.load('../data/generator_state'))
    d_net.load_state_dict(torch.load('../data/discriminator_state'))

print("Beginning training..")
loader = ETL(args.batch_size, args.image_size, args.path)

for iteration in range(args.iterations):

    # Train discriminator
    for _ in range(args.k_discriminator):
class AdvGAN_Pretrain:
    def __init__(self, device, model, model_num_labels, box_min, box_max):
        self.device = device
        self.model_num_labels = model_num_labels
        self.model = model
        self.box_min = box_min
        self.box_max = box_max

        self.netG = Generator().to(device)
        self.netDisc = Discriminator().to(device)

        # initialize all weights
        self.netG.apply(weights_init)
        self.netDisc.apply(weights_init)

        # initialize optimizers
        self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=1e-3)
        self.optimizer_D = torch.optim.Adam(self.netDisc.parameters(), lr=1e-3)

        if not os.path.exists(models_path):
            os.makedirs(models_path)

    def train_batch(self, x, labels):
        # optimize D
        for i in range(1):
            # Mask
            mask = torch.ones(x.size(0), 1, x.size(2), x.size(3))
            mask = mask.type(torch.FloatTensor).to(self.device)
            x_with_mask = torch.cat((x, mask), 1).to(self.device)
            perturbation = self.netG(x_with_mask)

            # add a clipping trick
            adv_images = torch.clamp(perturbation, -0.3, 0.3) * mask + x
            # adv_images = torch.clamp(perturbation, -0.3, 0.3) + x
            adv_images = torch.clamp(adv_images, self.box_min, self.box_max)

            self.optimizer_D.zero_grad()
            pred_real = self.netDisc(x)
            loss_D_real = F.mse_loss(
                pred_real, torch.ones_like(pred_real, device=self.device))
            loss_D_real.backward()

            pred_fake = self.netDisc(adv_images.detach())
            loss_D_fake = F.mse_loss(
                pred_fake, torch.zeros_like(pred_fake, device=self.device))
            loss_D_fake.backward()
            loss_D_GAN = loss_D_fake + loss_D_real
            self.optimizer_D.step()

        # optimize G
        for i in range(1):
            self.optimizer_G.zero_grad()

            # cal G's loss in GAN
            pred_fake = self.netDisc(adv_images)
            loss_G_fake = F.mse_loss(
                pred_fake, torch.ones_like(pred_fake, device=self.device))
            loss_G_fake.backward(retain_graph=True)

            # calculate perturbation norm
            loss_perturb = torch.mean(
                torch.norm(perturbation.view(perturbation.shape[0], -1),
                           2,
                           dim=1))
            # loss_perturb = torch.max(loss_perturb - C, torch.zeros(1, device=self.device))

            # cal adv loss
            logits_model = self.model(adv_images)
            probs_model = F.softmax(logits_model, dim=1)
            onehot_labels = torch.eye(self.model_num_labels,
                                      device=self.device)[labels]

            # C&W loss function
            real = torch.sum(onehot_labels * probs_model, dim=1)
            other, _ = torch.max(
                (1 - onehot_labels) * probs_model - onehot_labels * 10000,
                dim=1)
            zeros = torch.zeros_like(other)
            loss_adv = torch.max(real - other, zeros)
            loss_adv = torch.sum(loss_adv)

            # maximize cross_entropy loss
            # loss_adv = -F.mse_loss(logits_model, onehot_labels)
            # loss_adv = - F.cross_entropy(logits_model, labels)

            adv_lambda = 10
            pert_lambda = 1
            loss_G = adv_lambda * loss_adv + pert_lambda * loss_perturb
            loss_G.backward()
            self.optimizer_G.step()

        return loss_D_GAN.item(), loss_G_fake.item(), loss_perturb.item(
        ), loss_adv.item()

    def train(self, train_dataloader, epochs):
        writer = SummaryWriter(log_dir="visualization/pre_advgan/",
                               comment='Pretrained AdvGAN stats')

        for epoch in range(1, epochs + 1):

            if epoch == 50:
                self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                                    lr=1e-4)
                self.optimizer_D = torch.optim.Adam(self.netDisc.parameters(),
                                                    lr=1e-4)

            if epoch == 80:
                self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
                                                    lr=1e-5)
                self.optimizer_D = torch.optim.Adam(self.netDisc.parameters(),
                                                    lr=1e-5)

            loss_D_sum = 0
            loss_G_fake_sum = 0
            loss_perturb_sum = 0
            loss_adv_sum = 0
            for i, data in enumerate(train_dataloader, start=0):
                images, labels = data
                images, labels = images.to(self.device), labels.to(self.device)

                loss_D_batch, loss_G_fake_batch, loss_perturb_batch, loss_adv_batch = \
                    self.train_batch(images, labels)
                loss_D_sum += loss_D_batch
                loss_G_fake_sum += loss_G_fake_batch
                loss_perturb_sum += loss_perturb_batch
                loss_adv_sum += loss_adv_batch

            # print statistics
            num_batch = len(train_dataloader)
            writer.add_scalar('discriminator_loss', loss_D_sum / num_batch,
                              epoch)
            writer.add_scalar('generator_loss', loss_G_fake_sum / num_batch,
                              epoch)
            writer.add_scalar('perturbation_loss',
                              loss_perturb_sum / num_batch, epoch)
            writer.add_scalar('adversarial_loss', loss_adv_sum / num_batch,
                              epoch)
            print("epoch %d:\nloss_D: %.5f, loss_G_fake: %.5f,\
             \nloss_perturb: %.5f, loss_adv: %.5f\n" %
                  (epoch, loss_D_sum / num_batch, loss_G_fake_sum / num_batch,
                   loss_perturb_sum / num_batch, loss_adv_sum / num_batch))

            # save generator
            if epoch % 20 == 0:
                netG_file_name = models_path + 'netG_pretrained_epoch_' + str(
                    epoch) + '.pth'
                torch.save(self.netG.state_dict(), netG_file_name)
                netDisc_file_name = models_path + 'netDisc_pretrained_epoch_' + str(
                    epoch) + '.pth'
                torch.save(self.netDisc.state_dict(), netDisc_file_name)

        writer.close()
コード例 #17
0
    fixed_labels = torch.zeros(SAMPLE_SIZE, NUM_LABELS)
    for i in range(NUM_LABELS):
        for j in range(SAMPLE_SIZE // NUM_LABELS):
            fixed_labels[i*(SAMPLE_SIZE // NUM_LABELS) + j, i] = 1.0
    
    label = torch.FloatTensor(args.batch_size)
    one_hot_labels = torch.FloatTensor(args.batch_size, 10)
    if args.cuda:
        model_d.cuda()
        model_g.cuda()
        input, label = input.cuda(), label.cuda()
        noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
        one_hot_labels = one_hot_labels.cuda()
        fixed_labels = fixed_labels.cuda()

    optim_d = optim.SGD(model_d.parameters(), lr=args.lr)
    optim_g = optim.SGD(model_g.parameters(), lr=args.lr)
    fixed_noise = Variable(fixed_noise)
    fixed_labels = Variable(fixed_labels)

    real_label = 1
    fake_label = 0

    for epoch_idx in range(args.epochs):
        model_d.train()
        model_g.train()
            

        d_loss = 0.0
        g_loss = 0.0
        for batch_idx, (train_x, train_y) in enumerate(train_loader):
コード例 #18
0
def main():
    # # -------------------- Data --------------------
    num_workers = 8  # number of subprocesses to use for data loading
    batch_size = 64  # how many samples per batch to load
    transform = transforms.ToTensor()  # convert data to torch.FloatTensor
    train_data = datasets.MNIST(root='../data',
                                train=True,
                                download=True,
                                transform=transform)
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=batch_size,
                                               num_workers=num_workers)

    # # Obtain one batch of training images
    # dataiter = iter(train_loader)
    # images, labels = dataiter.next()
    # images = images.numpy()
    # # Get one image from the batch for visualization
    # img = np.squeeze(images[0])
    # fig = plt.figure(figsize=(3, 3))
    # ax = fig.add_subplot(111)
    # ax.imshow(img, cmap='gray')
    # plt.show()

    # # -------------------- Discriminator and Generator --------------------
    # Discriminator hyperparams
    input_size = 784  # Size of input image to discriminator (28*28)
    d_output_size = 1  # Size of discriminator output (real or fake)
    d_hidden_size = 32  # Size of last hidden layer in the discriminator
    # Generator hyperparams
    z_size = 100  # Size of latent vector to give to generator
    g_output_size = 784  # Size of discriminator output (generated image)
    g_hidden_size = 32  # Size of first hidden layer in the generator
    # Instantiate discriminator and generator
    D = Discriminator(input_size, d_hidden_size, d_output_size)
    G = Generator(z_size, g_hidden_size, g_output_size)

    # # -------------------- Optimizers and Criterion --------------------
    # Training hyperparams
    num_epochs = 100
    print_every = 400
    lr = 0.002

    # Create optimizers for the discriminator and generator, respectively
    d_optimizer = optim.Adam(D.parameters(), lr)
    g_optimizer = optim.Adam(G.parameters(), lr)
    losses = []  # keep track of generated "fake" samples

    criterion = nn.BCEWithLogitsLoss()

    # -------------------- Training --------------------
    D.train()
    G.train()

    # Get some fixed data for sampling. These are images that are held
    # constant throughout training, and allow us to inspect the model's performance
    sample_size = 16
    fixed_z = np.random.uniform(-1, 1, size=(sample_size, z_size))
    fixed_z = torch.from_numpy(fixed_z).float()
    samples = []  # keep track of loss

    for epoch in range(num_epochs):
        for batch_i, (real_images, _) in enumerate(train_loader):
            batch_size = real_images.size(0)

            # Important rescaling step
            real_images = real_images * 2 - 1  # rescale input images from [0,1) to [-1, 1)

            # Generate fake images, used for both discriminator and generator
            z = np.random.uniform(-1, 1, size=(batch_size, z_size))
            z = torch.from_numpy(z).float()
            fake_images = G(z)

            real_labels = torch.ones(batch_size)
            fake_labels = torch.zeros(batch_size)

            # ============================================
            #            TRAIN THE DISCRIMINATOR
            # ============================================

            d_optimizer.zero_grad()

            # 1. Train with real images

            # Compute the discriminator losses on real images
            D_real = D(real_images)
            d_real_loss = real_loss(criterion,
                                    D_real,
                                    real_labels,
                                    smooth=True)

            # 2. Train with fake images

            # Compute the discriminator losses on fake images
            # -------------------------------------------------------
            # ATTENTION:
            # *.detach(), thus, generator is fixed when we optimize
            # the discriminator
            # -------------------------------------------------------
            D_fake = D(fake_images.detach())
            d_fake_loss = fake_loss(criterion, D_fake, fake_labels)

            # 3. Add up loss and perform backprop
            d_loss = (d_real_loss + d_fake_loss) * 0.5
            d_loss.backward()
            d_optimizer.step()

            # =========================================
            #            TRAIN THE GENERATOR
            # =========================================

            g_optimizer.zero_grad()

            # Make the discriminator fixed when optimizing the generator
            set_model_gradient(D, False)

            # 1. Train with fake images and flipped labels

            # Compute the discriminator losses on fake images using flipped labels!
            G_D_fake = D(fake_images)
            g_loss = real_loss(criterion, G_D_fake,
                               real_labels)  # use real loss to flip labels

            # 2. Perform backprop
            g_loss.backward()
            g_optimizer.step()

            # Make the discriminator require_grad=True after optimizing the generator
            set_model_gradient(D, True)

            # =========================================
            #           Print some loss stats
            # =========================================
            if batch_i % print_every == 0:
                print(
                    'Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'.
                    format(epoch + 1, num_epochs, d_loss.item(),
                           g_loss.item()))

        # AFTER EACH EPOCH
        losses.append((d_loss.item(), g_loss.item()))

        # generate and save sample, fake images
        G.eval()  # eval mode for generating samples
        samples_z = G(fixed_z)
        samples.append(samples_z)
        view_samples(-1, samples, "last_sample.png")
        G.train()  # back to train mode

    # Save models and training generator samples
    torch.save(G.state_dict(), "G.pth")
    torch.save(D.state_dict(), "D.pth")
    with open('train_samples.pkl', 'wb') as f:
        pkl.dump(samples, f)

    # Plot the loss curve
    fig, ax = plt.subplots()
    losses = np.array(losses)
    plt.plot(losses.T[0], label='Discriminator')
    plt.plot(losses.T[1], label='Generator')
    plt.title("Training Losses")
    plt.legend()
    plt.savefig("loss.png")
    plt.show()
コード例 #19
0
class trainer(object):
    def __init__(self, cfg):
        self.cfg = cfg
        self.OldLabel_generator = U_Net(in_ch=cfg.DATASET.N_CLASS,
                                        out_ch=cfg.DATASET.N_CLASS,
                                        side='out')
        self.Image_generator = U_Net(in_ch=3,
                                     out_ch=cfg.DATASET.N_CLASS,
                                     side='in')
        self.discriminator = Discriminator(cfg.DATASET.N_CLASS + 3,
                                           cfg.DATASET.IMGSIZE,
                                           patch=True)

        self.criterion_G = GeneratorLoss(cfg.LOSS.LOSS_WEIGHT[0],
                                         cfg.LOSS.LOSS_WEIGHT[1],
                                         cfg.LOSS.LOSS_WEIGHT[2],
                                         ignore_index=cfg.LOSS.IGNORE_INDEX)
        self.criterion_D = DiscriminatorLoss()

        train_dataset = BaseDataset(cfg, split='train')
        valid_dataset = BaseDataset(cfg, split='val')
        self.train_dataloader = data.DataLoader(
            train_dataset,
            batch_size=cfg.DATASET.BATCHSIZE,
            num_workers=8,
            shuffle=True,
            drop_last=True)
        self.valid_dataloader = data.DataLoader(
            valid_dataset,
            batch_size=cfg.DATASET.BATCHSIZE,
            num_workers=8,
            shuffle=True,
            drop_last=True)

        self.ckpt_outdir = os.path.join(cfg.TRAIN.OUTDIR, 'checkpoints')
        if not os.path.isdir(self.ckpt_outdir):
            os.mkdir(self.ckpt_outdir)
        self.val_outdir = os.path.join(cfg.TRAIN.OUTDIR, 'val')
        if not os.path.isdir(self.val_outdir):
            os.mkdir(self.val_outdir)
        self.start_epoch = cfg.TRAIN.RESUME
        self.n_epoch = cfg.TRAIN.N_EPOCH

        self.optimizer_G = torch.optim.Adam(
            [{
                'params': self.OldLabel_generator.parameters()
            }, {
                'params': self.Image_generator.parameters()
            }],
            lr=cfg.OPTIMIZER.G_LR,
            betas=(cfg.OPTIMIZER.BETA1, cfg.OPTIMIZER.BETA2),
            # betas=(cfg.OPTIMIZER.BETA1, cfg.OPTIMIZER.BETA2),
            weight_decay=cfg.OPTIMIZER.WEIGHT_DECAY)

        self.optimizer_D = torch.optim.Adam(
            [{
                'params': self.discriminator.parameters(),
                'initial_lr': cfg.OPTIMIZER.D_LR
            }],
            lr=cfg.OPTIMIZER.D_LR,
            betas=(cfg.OPTIMIZER.BETA1, cfg.OPTIMIZER.BETA2),
            # betas=(cfg.OPTIMIZER.BETA1, cfg.OPTIMIZER.BETA2),
            weight_decay=cfg.OPTIMIZER.WEIGHT_DECAY)

        iter_per_epoch = len(train_dataset) // cfg.DATASET.BATCHSIZE
        lambda_poly = lambda iters: pow(
            (1.0 - iters / (cfg.TRAIN.N_EPOCH * iter_per_epoch)), 0.9)
        self.scheduler_G = torch.optim.lr_scheduler.LambdaLR(
            self.optimizer_G,
            lr_lambda=lambda_poly,
        )
        # last_epoch=(self.start_epoch+1)*iter_per_epoch)
        self.scheduler_D = torch.optim.lr_scheduler.LambdaLR(
            self.optimizer_D,
            lr_lambda=lambda_poly,
        )
        # last_epoch=(self.start_epoch+1)*iter_per_epoch)

        self.logger = logger(cfg.TRAIN.OUTDIR, name='train')
        self.running_metrics = runningScore(n_classes=cfg.DATASET.N_CLASS)

        if self.start_epoch >= 0:
            self.OldLabel_generator.load_state_dict(
                torch.load(
                    os.path.join(cfg.TRAIN.OUTDIR, 'checkpoints',
                                 '{}epoch.pth'.format(
                                     self.start_epoch)))['model_G_N'])
            self.Image_generator.load_state_dict(
                torch.load(
                    os.path.join(cfg.TRAIN.OUTDIR, 'checkpoints',
                                 '{}epoch.pth'.format(
                                     self.start_epoch)))['model_G_I'])
            self.discriminator.load_state_dict(
                torch.load(
                    os.path.join(cfg.TRAIN.OUTDIR, 'checkpoints',
                                 '{}epoch.pth'.format(
                                     self.start_epoch)))['model_D'])
            self.optimizer_G.load_state_dict(
                torch.load(
                    os.path.join(cfg.TRAIN.OUTDIR, 'checkpoints',
                                 '{}epoch.pth'.format(
                                     self.start_epoch)))['optimizer_G'])
            self.optimizer_D.load_state_dict(
                torch.load(
                    os.path.join(cfg.TRAIN.OUTDIR, 'checkpoints',
                                 '{}epoch.pth'.format(
                                     self.start_epoch)))['optimizer_D'])

            log = "Using the {}th checkpoint".format(self.start_epoch)
            self.logger.info(log)
        self.Image_generator = self.Image_generator.cuda()
        self.OldLabel_generator = self.OldLabel_generator.cuda()
        self.discriminator = self.discriminator.cuda()
        self.criterion_G = self.criterion_G.cuda()
        self.criterion_D = self.criterion_D.cuda()

    def train(self):
        all_train_iter_total_loss = []
        all_train_iter_corr_loss = []
        all_train_iter_recover_loss = []
        all_train_iter_change_loss = []
        all_train_iter_gan_loss_gen = []
        all_train_iter_gan_loss_dis = []
        all_val_epo_iou = []
        all_val_epo_acc = []
        iter_num = [0]
        epoch_num = []
        num_batches = len(self.train_dataloader)

        for epoch_i in range(self.start_epoch + 1, self.n_epoch):
            iter_total_loss = AverageTracker()
            iter_corr_loss = AverageTracker()
            iter_recover_loss = AverageTracker()
            iter_change_loss = AverageTracker()
            iter_gan_loss_gen = AverageTracker()
            iter_gan_loss_dis = AverageTracker()
            batch_time = AverageTracker()
            tic = time.time()

            # train
            self.OldLabel_generator.train()
            self.Image_generator.train()
            self.discriminator.train()
            for i, meta in enumerate(self.train_dataloader):

                image, old_label, new_label = meta[0].cuda(), meta[1].cuda(
                ), meta[2].cuda()
                recover_pred, feats = self.OldLabel_generator(
                    label2onehot(old_label, self.cfg.DATASET.N_CLASS))
                corr_pred = self.Image_generator(image, feats)

                # -------------------
                # Train Discriminator
                # -------------------
                self.discriminator.set_requires_grad(True)
                self.optimizer_D.zero_grad()

                fake_sample = torch.cat((image, corr_pred), 1).detach()
                real_sample = torch.cat(
                    (image, label2onehot(new_label, cfg.DATASET.N_CLASS)), 1)

                score_fake_d = self.discriminator(fake_sample)
                score_real = self.discriminator(real_sample)

                gan_loss_dis = self.criterion_D(pred_score=score_fake_d,
                                                real_score=score_real)
                gan_loss_dis.backward()
                self.optimizer_D.step()
                self.scheduler_D.step()

                # ---------------
                # Train Generator
                # ---------------
                self.discriminator.set_requires_grad(False)
                self.optimizer_G.zero_grad()

                score_fake = self.discriminator(
                    torch.cat((image, corr_pred), 1))

                total_loss, corr_loss, recover_loss, change_loss, gan_loss_gen = self.criterion_G(
                    corr_pred, recover_pred, score_fake, old_label, new_label)

                total_loss.backward()
                self.optimizer_G.step()
                self.scheduler_G.step()

                iter_total_loss.update(total_loss.item())
                iter_corr_loss.update(corr_loss.item())
                iter_recover_loss.update(recover_loss.item())
                iter_change_loss.update(change_loss.item())
                iter_gan_loss_gen.update(gan_loss_gen.item())
                iter_gan_loss_dis.update(gan_loss_dis.item())
                batch_time.update(time.time() - tic)
                tic = time.time()

                log = '{}: Epoch: [{}][{}/{}], Time: {:.2f}, ' \
                      'Total Loss: {:.6f}, Corr Loss: {:.6f}, Recover Loss: {:.6f}, Change Loss: {:.6f}, GAN_G Loss: {:.6f}, GAN_D Loss: {:.6f}'.format(
                    datetime.now(), epoch_i, i, num_batches, batch_time.avg,
                    total_loss.item(), corr_loss.item(), recover_loss.item(), change_loss.item(), gan_loss_gen.item(), gan_loss_dis.item())
                print(log)

                if (i + 1) % 10 == 0:
                    all_train_iter_total_loss.append(iter_total_loss.avg)
                    all_train_iter_corr_loss.append(iter_corr_loss.avg)
                    all_train_iter_recover_loss.append(iter_recover_loss.avg)
                    all_train_iter_change_loss.append(iter_change_loss.avg)
                    all_train_iter_gan_loss_gen.append(iter_gan_loss_gen.avg)
                    all_train_iter_gan_loss_dis.append(iter_gan_loss_dis.avg)
                    iter_total_loss.reset()
                    iter_corr_loss.reset()
                    iter_recover_loss.reset()
                    iter_change_loss.reset()
                    iter_gan_loss_gen.reset()
                    iter_gan_loss_dis.reset()

                    vis.line(X=np.column_stack(
                        np.repeat(np.expand_dims(iter_num, 0), 6, axis=0)),
                             Y=np.column_stack((all_train_iter_total_loss,
                                                all_train_iter_corr_loss,
                                                all_train_iter_recover_loss,
                                                all_train_iter_change_loss,
                                                all_train_iter_gan_loss_gen,
                                                all_train_iter_gan_loss_dis)),
                             opts={
                                 'legend': [
                                     'total_loss', 'corr_loss', 'recover_loss',
                                     'change_loss', 'gan_loss_gen',
                                     'gan_loss_dis'
                                 ],
                                 'linecolor':
                                 np.array([[255, 0, 0], [0, 255, 0],
                                           [0, 0, 255], [255, 255, 0],
                                           [0, 255, 255], [255, 0, 255]]),
                                 'title':
                                 'Train loss of generator and discriminator'
                             },
                             win='Train loss of generator and discriminator')
                    iter_num.append(iter_num[-1] + 1)

            # eval
            self.OldLabel_generator.eval()
            self.Image_generator.eval()
            self.discriminator.eval()
            with torch.no_grad():
                for j, meta in enumerate(self.valid_dataloader):
                    image, old_label, new_label = meta[0].cuda(), meta[1].cuda(
                    ), meta[2].cuda()
                    recover_pred, feats = self.OldLabel_generator(
                        label2onehot(old_label, self.cfg.DATASET.N_CLASS))
                    corr_pred = self.Image_generator(image, feats)
                    preds = np.argmax(corr_pred.cpu().detach().numpy().copy(),
                                      axis=1)
                    target = new_label.cpu().detach().numpy().copy()
                    self.running_metrics.update(target, preds)

                    if j == 0:
                        color_map1 = gen_color_map(preds[0, :]).astype(
                            np.uint8)
                        color_map2 = gen_color_map(preds[1, :]).astype(
                            np.uint8)
                        color_map = cv2.hconcat([color_map1, color_map2])
                        cv2.imwrite(
                            os.path.join(
                                self.val_outdir, '{}epoch*{}*{}.png'.format(
                                    epoch_i, meta[3][0], meta[3][1])),
                            color_map)

            score = self.running_metrics.get_scores()
            oa = score['Overall Acc: \t']
            precision = score['Precision: \t'][1]
            recall = score['Recall: \t'][1]
            iou = score['Class IoU: \t'][1]
            miou = score['Mean IoU: \t']
            self.running_metrics.reset()

            epoch_num.append(epoch_i)
            all_val_epo_acc.append(oa)
            all_val_epo_iou.append(miou)
            vis.line(X=np.column_stack(
                np.repeat(np.expand_dims(epoch_num, 0), 2, axis=0)),
                     Y=np.column_stack((all_val_epo_acc, all_val_epo_iou)),
                     opts={
                         'legend':
                         ['val epoch Overall Acc', 'val epoch Mean IoU'],
                         'linecolor': np.array([[255, 0, 0], [0, 255, 0]]),
                         'title': 'Validate Accuracy and IoU'
                     },
                     win='validate Accuracy and IoU')

            log = '{}: Epoch Val: [{}], ACC: {:.2f}, Recall: {:.2f}, mIoU: {:.4f}' \
                .format(datetime.now(), epoch_i, oa, recall, miou)
            self.logger.info(log)

            state = {
                'epoch': epoch_i,
                "acc": oa,
                "recall": recall,
                "iou": miou,
                'model_G_N': self.OldLabel_generator.state_dict(),
                'model_G_I': self.Image_generator.state_dict(),
                'model_D': self.discriminator.state_dict(),
                'optimizer_G': self.optimizer_G.state_dict(),
                'optimizer_D': self.optimizer_D.state_dict()
            }
            save_path = os.path.join(self.cfg.TRAIN.OUTDIR, 'checkpoints',
                                     '{}epoch.pth'.format(epoch_i))
            torch.save(state, save_path)
コード例 #20
0
ファイル: train.py プロジェクト: IvanHahan/faceswap
    make_dir_if_needed(args.data_output)

    generator = UNet(71, 3, False).to(device)
    discriminator = Discriminator(3, args.size).to(device)

    if args.dataset == 'youtube':
        gl_data_sampler = YoutubeFaces(args.data_dir, device=device, size=args.size)
        disc_data_sampler = YoutubeFaces(args.data_dir, device=device, len=3, size=args.size)
    elif args.dataset == 'my':
        gl_data_sampler = MyDatasetSampler(args.data_dir, device=device, size=args.size)
        disc_data_sampler = MyDatasetSampler(args.data_dir, device=device, length=3, size=args.size)

    compute_perceptual = PerceptualLoss().to(device)

    gen_optim = ranger(generator.parameters())
    disc_optim = ranger(discriminator.parameters())

    losses = []

    for e in range(epochs):
        print('EPOCH {}'.format(e))
        for first, second, third in tqdm(DataLoader(gl_data_sampler, batch_size=1)):

            generator.train(False)
            discriminator.train(True)

            for d_first, d_second, _ in DataLoader(disc_data_sampler, batch_size=1):

                disc_optim.zero_grad()
                gen_in = torch.cat([d_first[0], d_second[1]], 1)
コード例 #21
0
class SEQGANs(nn.Module):
    def __init__(self):
        super().__init__()
        self.l2_reg_lambda = 0.2
        self.batch_size = 8  #batch的大小,为1的时候,过程有使用unsqueeze,可能会出错
        self.filter_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15,
                             20]  # 判别器的窗口大小(也即每个窗口包含多少个单词)
        self.num_filters = [
            100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160
        ]  # 判别器channels数量
        self.num_classes = 1  # 判别器分类类别数量(输出结点数)
        self.embedding_size = 100  # 单词embedding大小
        self.hidden_size_gru = 100  # GRU的隐藏层大小
        self.start_idx = 0  #开始token的序号
        self.end_idx = 1  #结束token的序号
        self.padding_idx = 2  #填充token的序号
        self.start_input = torch.tensor(
            self.batch_size * [self.start_idx]).cuda()  #Generator开始的输入
        self.start_h = torch.zeros(
            self.batch_size, self.hidden_size_gru).cuda()  #Generator开始的状态
        self.rollout_num = 10  #rollout的数量
        self.dataset = DataSet_Obama(root_src=r'../datas/obama/input.txt',
                                     start_idx=self.start_idx,
                                     end_idx=self.end_idx,
                                     padding_idx=self.padding_idx)  #载入真实数据
        self.sequence_length = self.dataset.max_doclen + 1  # 真实数据集的最大句子长度+1(算上end token)
        self.vocab_size = self.dataset.dictionary.__len__()  # 字典大小
        self.dataloader = DataLoader(self.dataset,
                                     batch_size=self.batch_size,
                                     shuffle=False,
                                     num_workers=2)
        self.G = Generator(self.vocab_size, self.embedding_size,
                           self.hidden_size_gru)
        self.D = Discriminator(self.sequence_length, self.num_classes,
                               self.vocab_size, self.embedding_size,
                               self.filter_sizes, self.num_filters)
        self.embeddings = nn.Embedding(num_embeddings=self.vocab_size,
                                       embedding_dim=self.embedding_size,
                                       padding_idx=self.padding_idx)
        self.pre_optimizer = torch.optim.Adam([{
            'params': self.G.parameters()
        }, {
            'params':
            self.embeddings.parameters()
        }])
        self.G_optimizer = torch.optim.Adam([{
            'params': self.G.parameters()
        }, {
            'params':
            self.embeddings.parameters()
        }])
        self.D_optimizer = torch.optim.Adam([{
            'params': self.D.parameters()
        }, {
            'params':
            self.embeddings.parameters()
        }])

    def forward(self, input):
        return -1

    def pad_data(self, samples, record, sequence_length):  #对数据进行padding
        '''
        :param samples:seq_len, batch
        :param record:dictionary
        :return:
        '''
        for b in record.keys():
            for t in range(record[b] + 1, sequence_length):
                samples[t][b] = 2
        return samples

    def generate_X_nofixedlen(self, start_input,
                              start_h):  #生成器生成不定长的句子(会使用padding token进行填充)
        '''
        :param start_input: batch
        :param start_h: batch * hidden_size
        :param sequence_length: int
        :return:samples: seq_len * batch||hs: seq_len * batch * hidden_size||predictions: seq_len * batch * vocab_size
        '''
        record = {}  #记录已经生成出end token的batch idx,以及对应在samples中end token的位置序号
        now_len = 0  #记录最新生成的长度
        samples = []
        predictions = []
        hs = []
        input = self.embeddings(start_input)  # 设置初始输入,batch, input_size
        last_h = start_h  # 设置初始状态
        while record.__len__() != start_h.shape[0]:  #判断是否所有batch都生成初end token
            # 迭代GRU
            next_token, h, prediction = self.G(
                input, last_h)  # 获得当前时间步预测的下一个token,隐藏状态和预测层
            samples.append(torch.unsqueeze(next_token, dim=0))
            hs.append(torch.unsqueeze(h, dim=0))
            predictions.append(torch.unsqueeze(prediction, dim=0))
            input = self.embeddings(next_token)
            last_h = h
            for i in range(next_token.shape[0]):  #判断每一个next token是否end token
                if next_token[i] == 1 and i not in record.keys():
                    record[i] = now_len
            now_len += 1
        samples = torch.cat(samples, dim=0)
        hs = torch.cat(hs, dim=0)
        predictions = torch.cat(predictions, dim=0)
        samples = self.pad_data(
            samples=samples,
            record=record)  #对生成出来的token的end token后的位置进行padding。
        return samples, hs, predictions, record, now_len  # return seq_len, batch  -   seq_len, batch, hidden_size   -   seq_len, batch, vocab_size, list, int

    def generate_X(self, start_input, start_h, sequence_length):  #生成样本,有最大长度
        '''

        :param start_input: batch
        :param start_h: batch * hidden_size
        :param sequence_length: int
        :return:samples: seq_len * batch||hs: seq_len * batch * hidden_size||predictions: seq_len * batch * vocab_size
        '''
        record = {}  # 记录已经生成出end token的batch idx,以及对应在samples中end token的位置序号
        now_len = 0  # 记录最新生成的长度
        samples = []
        predictions = []
        hs = []
        input = self.embeddings(start_input)  #设置初始输入,batch, input_size
        last_h = start_h  #设置初始状态
        for i in range(sequence_length):
            # 迭代GRU
            next_token, h, prediction = self.G(
                input, last_h)  #获得当前时间步预测的下一个token,隐藏状态和预测层
            samples.append(torch.unsqueeze(next_token, dim=0))
            hs.append(torch.unsqueeze(h, dim=0))
            predictions.append(torch.unsqueeze(prediction, dim=0))
            input = self.embeddings(next_token)
            last_h = h
            for i in range(next_token.shape[0]):  #判断每一个next token是否end token
                if next_token[i] == 1 and i not in record.keys():
                    record[i] = now_len
            now_len += 1
        samples = torch.cat(samples, dim=0)
        hs = torch.cat(hs, dim=0)
        predictions = torch.cat(predictions, dim=0)
        samples = self.pad_data(samples=samples,
                                record=record,
                                sequence_length=sequence_length
                                )  # 对生成出来的token的end token后的位置进行padding。
        return samples, hs, predictions, record  #return seq_len, batch  -   seq_len, batch, hidden_size   -   seq_len, batch, vocab_size   -  list

    def generate_pretrained(self, start_input, start_h, sequence_length,
                            groundtrues):  #预训练阶段,输入为正确的单词,输出预测
        '''

        :param start_input: batch
        :param start_h: batch * hidden_size
        :param sequence_length: int
        :param groundtrues: sequence_length * batch
        :return:predictions: seq_len * batch * vocab_size
        '''
        predictions = []
        input = self.embeddings(start_input)  #设置初始输入,batch, input_size
        last_h = start_h  #设置初始状态
        for i in range(sequence_length):
            # 迭代GRU
            next_token, h, prediction = self.G(
                input, last_h)  #获得当前时间步预测的下一个token,隐藏状态和预测层
            predictions.append(torch.unsqueeze(prediction, dim=0))
            input = self.embeddings(groundtrues[i])  #输入正确的单词embedding
            last_h = h
        predictions = torch.cat(predictions, dim=0)
        return predictions  #return seq_len, batch, vocab_size

    def show_G(self):
        samples, _, _, _ = self.generate_X(
            start_input=self.start_input,
            start_h=self.start_h,
            sequence_length=self.sequence_length)
        return samples

    def pretraining(self):
        loss_func = nn.NLLLoss(ignore_index=self.padding_idx)
        for epoch in range(1):
            total_loss = 0.0
            for i, x_batch in enumerate(
                    self.dataloader):  #x_batch: batch * seq_len
                self.pre_optimizer.zero_grad()
                x_groundtrues = torch.transpose(
                    x_batch, dim0=0,
                    dim1=1).cuda()  #x_groundtrues: seq_len * batch
                if x_batch.size()[0] == self.batch_size:
                    predictions = self.generate_pretrained(  #predictions: seq_len * batch * vocab_size
                        start_input=self.start_input,
                        start_h=self.start_h,
                        sequence_length=self.sequence_length,
                        groundtrues=x_groundtrues)
                else:
                    predictions = self.generate_pretrained(  # predictions: seq_len * batch * vocab_size
                        start_input=torch.tensor(x_batch.size()[0] *
                                                 [self.start_idx]).cuda(),
                        start_h=torch.zeros(x_batch.size()[0],
                                            self.hidden_size_gru).cuda(),
                        sequence_length=self.sequence_length,
                        groundtrues=x_groundtrues)
                loss = 0.0
                for t in range(self.sequence_length):
                    loss += loss_func(
                        torch.log(
                            torch.clamp(predictions[t], min=1e-20, max=1.0)),
                        x_groundtrues[t])  #tar*log(pre)
                loss = loss / self.sequence_length
                total_loss += loss.item()
                loss.backward()
                self.pre_optimizer.step()
            total_loss = total_loss / (i + 1)
            #输出loss和生成的字符
            return total_loss

    def rollout(self):
        samples, hs, predictions, record = self.generate_X(
            start_input=self.start_input,
            start_h=self.start_h,
            sequence_length=self.sequence_length)
        result_rollout = []
        for given_num in range(self.sequence_length - 1):  #given < T, 遍历
            result_overtimes = []  #存放每个时间步的rollout结果
            for i in range(self.rollout_num):
                sample_rollout, _, _, _ = self.generate_X(
                    start_input=samples[given_num],
                    start_h=hs[given_num],
                    sequence_length=self.sequence_length - given_num - 1,
                )
                result_overtimes.append(
                    torch.unsqueeze(
                        torch.cat([samples[0:given_num + 1], sample_rollout],
                                  0), 0))
            result_overtimes = torch.cat(
                result_overtimes,
                0)  #result_overtimes: rollout_num * seq_len * batch
            result_rollout.append(torch.unsqueeze(result_overtimes, 0))
        result_rollout = torch.cat(
            result_rollout,
            0)  #result_rollout:(seq_len-1) * rollout_num * seq_len * batch
        return result_rollout, samples, predictions, record  #result_rollout为1-(T-1)的rollout结果,samples为完整句子

    def onehot(self, label):
        a = torch.FloatTensor(self.sequence_length, self.batch_size,
                              self.vocab_size).zero_().cuda()
        return a.scatter_(dim=2, index=label, value=1)

    def generate_code(self, record):
        '''

        :param record:
        :return code:seq_len * batch * 1
                    根据每个batch的句子长度来生成seq_len * batch * 1的0 1编码,1表示该位置的reward应该算上,0表示不算上。
                    如seq_len为4句子长度分别为1,3,2的batch(end token分别对应samples中的1,3,2位置)对应的code为:
                    1 1 1
                    0 1 1
                    0 1 0
                    1 1 1
                 num_elements:batch
                    为code中每个batch统计出为1的数量。
        '''
        num_elements = torch.zeros(self.batch_size,
                                   1).new_full(size=(self.batch_size, 1),
                                               fill_value=self.sequence_length)
        code = torch.ones(self.sequence_length, self.batch_size, 1)
        for b in record.keys():
            num_elements[b][0] = record[b] + 1
            for t in range(record[b], self.sequence_length - 1):
                code[t][b][0] = 0
        return code, num_elements

    def backward_G(self):
        result_rollout, result, predictions, record = self.rollout()
        total_reward = []
        for t in range(self.sequence_length - 1):  #计算T-1的rollout奖励
            result_rollout_trans = torch.transpose(
                result_rollout[t], dim0=1,
                dim1=2)  #result_rollout_trans: rollout_num * batch * seq_len
            input_D = self.embeddings(result_rollout_trans)
            input_D = torch.unsqueeze(
                input_D, 2
            )  #input_D: rollout_num * batch * 1 * seq_len * embedding_size
            reward = 0.0
            for i in range(self.rollout_num):
                reward += self.D(input_D[i])
            reward = reward / self.rollout_num
            total_reward.append(torch.unsqueeze(reward, 0))
        #计算T时间的奖励
        result_trans = torch.transpose(result, dim0=0,
                                       dim1=1)  #result_trans: batch * seq_len
        input_D = self.embeddings(result_trans)
        input_D = torch.unsqueeze(
            input_D, 1)  #input_D: batch * 1 * seq_len * embedding_size
        total_reward.append(torch.unsqueeze(self.D(input_D), 0))
        total_reward = torch.cat(total_reward,
                                 0)  #total_reward: seq_len * batch * 1
        #计算J
        result_onehot = self.onehot(torch.unsqueeze(result, 2))
        policy = result_onehot * predictions
        policy = torch.unsqueeze(torch.sum(policy, 2),
                                 2)  #policy: seq_len * batch * 1
        code, num_elements = self.generate_code(record=record)
        code = code.cuda()
        num_elements = num_elements.cuda()
        J_temp = torch.sum(
            torch.log(torch.clamp(policy, min=1e-20, max=1.0)) * total_reward *
            code, 0) / num_elements  #J_temp: batch * 1
        J = -(torch.sum(J_temp) / self.batch_size)
        self.G_optimizer.zero_grad()
        J.backward()
        self.G_optimizer.step()
        return J.item()

    def backward_D(self,
                   update=True,
                   loss_f='LOG',
                   is_epoch=False):  #is_epoch: 是否遍历整个真实样本
        total_loss = 0.0
        mse = nn.MSELoss()
        for i, x_batch_pos in enumerate(self.dataloader):
            self.D_optimizer.zero_grad()
            if x_batch_pos.size()[0] == self.batch_size:
                x_batch_neg, _, _, _ = self.generate_X(
                    start_input=self.start_input,
                    start_h=self.start_h,
                    sequence_length=self.sequence_length)
            else:  #如果dataloader抽出来的不满足batch_size的大小要求
                x_batch_neg, _, _, _ = self.generate_X(
                    start_input=torch.tensor(x_batch_pos.size()[0] *
                                             [self.start_idx]).cuda(),
                    start_h=torch.zeros(x_batch_pos.size()[0],
                                        self.hidden_size_gru).cuda(),
                    sequence_length=self.sequence_length)
            x_batch_neg = torch.transpose(
                x_batch_neg, dim0=0, dim1=1)  #x_batch_neg: batch * seq_len
            input_batch_pos = self.embeddings(x_batch_pos.cuda())
            input_batch_neg = self.embeddings(x_batch_neg)
            input_batch_pos = torch.unsqueeze(
                input_batch_pos,
                1)  #input_batch_pos: batch * 1 * seq_len * embedding_size
            input_batch_neg = torch.unsqueeze(
                input_batch_neg,
                1)  #input_batch_neg: batch * 1 * seq_len * embedding_size
            pre_pos = self.D(input=input_batch_pos)
            pre_neg = self.D(input=input_batch_neg)
            if loss_f == 'LOG':
                loss = -torch.sum(
                    torch.log(torch.clamp(pre_pos, min=1e-20, max=1.0)) +
                    torch.log(torch.clamp(
                        (1 - pre_neg), min=1e-20, max=1.0))) / (
                            2 * pre_pos.size()[0])
            elif loss_f == 'MSE':
                loss = (
                    mse(pre_pos,
                        torch.ones(x_batch_pos.size()[0], 1).cuda()) +
                    mse(pre_neg,
                        torch.zeros(x_batch_pos.size()[0], 1).cuda())) / 2.0
            # 加入L2正则化
            l2_loss = torch.tensor(0.).cuda()
            for param in self.D.output_layer.parameters():
                l2_loss += torch.norm(param, p=2)
            loss += self.l2_reg_lambda * l2_loss

            total_loss += loss.item()
            loss.backward()
            if update:
                self.D_optimizer.step()
            if not is_epoch:
                return total_loss  #只训练一个batch
        total_loss = total_loss / (i + 1)
        return total_loss
コード例 #22
0
        transforms.ToPILImage(),
        transforms.Resize(img_size),
        transforms.ToTensor(),
        transforms.Normalize(
            (mid_pixel_value,) * in_channels, (mid_pixel_value,) * in_channels
        ),
    ]
)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_dataloader = create_dagan_dataloader(
    raw_data, num_training_classes, train_transform, batch_size
)

g_opt = optim.Adam(g.parameters(), lr=0.0001, betas=(0.0, 0.9))
d_opt = optim.Adam(d.parameters(), lr=0.0001, betas=(0.0, 0.9))

val_data = raw_data[num_training_classes : num_training_classes + num_val_classes]
flat_val_data = val_data.reshape(
    (val_data.shape[0] * val_data.shape[1], *val_data.shape[2:])
)

display_transform = train_transform

trainer = DaganTrainer(
    generator=g,
    discriminator=d,
    gen_optimizer=g_opt,
    dis_optimizer=d_opt,
    batch_size=batch_size,
    device=device,
コード例 #23
0
class CycleGAN(AlignmentModel):
    """This class implements the alignment model for GAN networks with two generators and two discriminators
    (cycle GAN). For description of the implemented functions, refer to the alignment model."""
    def __init__(self,
                 device,
                 config,
                 generator_a=None,
                 generator_b=None,
                 discriminator_a=None,
                 discriminator_b=None):
        """Initialize two new generators and two discriminators from the config or use pre-trained ones and create Adam
        optimizers for all models."""
        super().__init__(device, config)
        self.epoch_losses = [0., 0., 0., 0.]

        if generator_a is None:
            generator_a_conf = dict(
                dim_1=config['dim_b'],
                dim_2=config['dim_a'],
                layer_number=config['generator_layers'],
                layer_expansion=config['generator_expansion'],
                initialize_generator=config['initialize_generator'],
                norm=config['gen_norm'],
                batch_norm=config['gen_batch_norm'],
                activation=config['gen_activation'],
                dropout=config['gen_dropout'])
            self.generator_a = Generator(generator_a_conf, device)
            self.generator_a.to(device)
        else:
            self.generator_a = generator_a
        if 'optimizer' in config:
            self.optimizer_g_a = OPTIMIZERS[config['optimizer']](
                self.generator_a.parameters(), config['learning_rate'])
        elif 'optimizer_default' in config:
            if config['optimizer_default'] == 'sgd':
                self.optimizer_g_a = OPTIMIZERS[config['optimizer_default']](
                    self.generator_a.parameters(), config['learning_rate'])
            else:
                self.optimizer_g_a = OPTIMIZERS[config['optimizer_default']](
                    self.generator_a.parameters())
        else:
            self.optimizer_g_a = torch.optim.Adam(
                self.generator_a.parameters(), config['learning_rate'])

        if generator_b is None:
            generator_b_conf = dict(
                dim_1=config['dim_a'],
                dim_2=config['dim_b'],
                layer_number=config['generator_layers'],
                layer_expansion=config['generator_expansion'],
                initialize_generator=config['initialize_generator'],
                norm=config['gen_norm'],
                batch_norm=config['gen_batch_norm'],
                activation=config['gen_activation'],
                dropout=config['gen_dropout'])
            self.generator_b = Generator(generator_b_conf, device)
            self.generator_b.to(device)
        else:
            self.generator_b = generator_b
        if 'optimizer' in config:
            self.optimizer_g_b = OPTIMIZERS[config['optimizer']](
                self.generator_b.parameters(), config['learning_rate'])
        elif 'optimizer_default' in config:
            if config['optimizer_default'] == 'sgd':
                self.optimizer_g_b = OPTIMIZERS[config['optimizer_default']](
                    self.generator_b.parameters(), config['learning_rate'])
            else:
                self.optimizer_g_b = OPTIMIZERS[config['optimizer_default']](
                    self.generator_b.parameters())
        else:
            self.optimizer_g_b = torch.optim.Adam(
                self.generator_b.parameters(), config['learning_rate'])

        if discriminator_a is None:
            discriminator_a_conf = dict(
                dim=config['dim_a'],
                layer_number=config['discriminator_layers'],
                layer_expansion=config['discriminator_expansion'],
                batch_norm=config['disc_batch_norm'],
                activation=config['disc_activation'],
                dropout=config['disc_dropout'])
            self.discriminator_a = Discriminator(discriminator_a_conf, device)
            self.discriminator_a.to(device)
        else:
            self.discriminator_a = discriminator_a
        if 'optimizer' in config:
            self.optimizer_d_a = OPTIMIZERS[config['optimizer']](
                self.discriminator_a.parameters(), config['learning_rate'])
        elif 'optimizer_default' in config:
            if config['optimizer_default'] == 'sgd':
                self.optimizer_d_a = OPTIMIZERS[config['optimizer_default']](
                    self.discriminator_a.parameters(), config['learning_rate'])
            else:
                self.optimizer_d_a = OPTIMIZERS[config['optimizer_default']](
                    self.discriminator_a.parameters())
        else:
            self.optimizer_d_a = torch.optim.Adam(
                self.discriminator_a.parameters(), config['learning_rate'])

        if discriminator_b is None:
            discriminator_b_conf = dict(
                dim=config['dim_b'],
                layer_number=config['discriminator_layers'],
                layer_expansion=config['discriminator_expansion'],
                batch_norm=config['disc_batch_norm'],
                activation=config['disc_activation'],
                dropout=config['disc_dropout'])
            self.discriminator_b = Discriminator(discriminator_b_conf, device)
            self.discriminator_b.to(device)
        else:
            self.discriminator_b = discriminator_b
        if 'optimizer' in config:
            self.optimizer_d_b = OPTIMIZERS[config['optimizer']](
                self.discriminator_b.parameters(), config['learning_rate'])
        elif 'optimizer_default' in config:
            if config['optimizer_default'] == 'sgd':
                self.optimizer_d_b = OPTIMIZERS[config['optimizer_default']](
                    self.discriminator_b.parameters(), config['learning_rate'])
            else:
                self.optimizer_d_b = OPTIMIZERS[config['optimizer_default']](
                    self.discriminator_b.parameters())
        else:
            self.optimizer_d_b = torch.optim.Adam(
                self.discriminator_b.parameters(), config['learning_rate'])

    def train(self):
        self.generator_a.train()
        self.generator_b.train()
        self.discriminator_a.train()
        self.discriminator_b.train()

    def eval(self):
        self.generator_a.eval()
        self.generator_b.eval()
        self.discriminator_a.eval()
        self.discriminator_b.eval()

    def zero_grad(self):
        self.optimizer_g_a.zero_grad()
        self.optimizer_g_b.zero_grad()
        self.optimizer_d_a.zero_grad()
        self.optimizer_d_b.zero_grad()

    def optimize_all(self):
        self.optimizer_g_a.step()
        self.optimizer_g_b.step()
        self.optimizer_d_a.step()
        self.optimizer_d_b.step()

    def optimize_generator(self):
        """Do the optimization step only for generators (e.g. when training generators and discriminators separately or
        in turns)."""
        self.optimizer_g_a.step()
        self.optimizer_g_b.step()

    def optimize_discriminator(self):
        """Do the optimization step only for discriminators (e.g. when training generators and discriminators separately
        or in turns)."""
        self.optimizer_d_a.step()
        self.optimizer_d_b.step()

    def change_lr(self, factor):
        self.current_lr = self.current_lr * factor
        for param_group in self.optimizer_g_a.param_groups:
            param_group['lr'] = self.current_lr
        for param_group in self.optimizer_g_b.param_groups:
            param_group['lr'] = self.current_lr

    def update_losses_batch(self, *losses):
        loss_g_a, loss_g_b, loss_d_a, loss_d_b = losses
        self.epoch_losses[0] += loss_g_a
        self.epoch_losses[1] += loss_g_b
        self.epoch_losses[2] += loss_d_a
        self.epoch_losses[3] += loss_d_b

    def complete_epoch(self, epoch_metrics):
        self.metrics.append(epoch_metrics + [sum(self.epoch_losses)])
        self.losses.append(self.epoch_losses)
        self.epoch_losses = [0., 0., 0., 0.]

    def print_epoch_info(self):
        print(
            f"{len(self.metrics)} ### {self.losses[-1][0]:.2f} - {self.losses[-1][1]:.2f} "
            f"- {self.losses[-1][2]:.2f} - {self.losses[-1][3]:.2f} ### {self.metrics[-1]}"
        )

    def copy_model(self):
        self.model_copy = deepcopy(self.generator_a.state_dict()), deepcopy(self.generator_b.state_dict()),\
                          deepcopy(self.discriminator_a.state_dict()), deepcopy(self.discriminator_b.state_dict())

    def restore_model(self):
        self.generator_a.load_state_dict(self.model_copy[0])
        self.generator_b.load_state_dict(self.model_copy[1])
        self.discriminator_a.load_state_dict(self.model_copy[2])
        self.discriminator_b.load_state_dict(self.model_copy[3])

    def export_model(self, test_results, description=None):
        if description is None:
            description = f"CycleGAN_{self.config['evaluation']}_{self.config['subset']}"
        export_cyclegan_alignment(description, self.config, self.generator_a,
                                  self.generator_b, self.discriminator_a,
                                  self.discriminator_b, self.metrics)
        save_alignment_test_results(test_results, description)
        print(f"Saved model to directory {description}.")

    @classmethod
    def load_model(cls, name, device):
        generator_a, generator_b, discriminator_a, discriminator_b, config = load_cyclegan_alignment(
            name, device)
        model = cls(device, config, generator_a, generator_b, discriminator_a,
                    discriminator_b)
        return model
コード例 #24
0
ファイル: main.py プロジェクト: Amitdedhia6/DrugDiscovery
def train_gan():
    print("GAN training to start on", device)

    print("Now loading data . . .")
    train_smiles_data = load_real_data()
    print("Data loaded")

    discriminator = Discriminator(vocab).to(device)
    generator = Generator(vocab).to(device)
    d_optimizer = optim.Adam(discriminator.parameters(), lr=param.lr_d)
    g_optimizer = optim.Adam(generator.parameters(), lr=param.lr_g)

    num_epochs = param.num_epochs
    batch_size = param.batch_size
    num_steps = param.num_steps
    dataset_size = train_smiles_data.sequence_list_size
    print("dataset_size =", dataset_size)

    # *************
    # THE LOGIC
    # *************
    #   for num_iter
    #       1. for num_steps
    #           (a) train discriminator with samples = batch_size
    #       2. Train generator with samples = batch_size
    #
    # How to determine num_iterations?
    #   num_iter * num_steps * batch_size = dataset_size * num_epochs
    #
    # *************

    num_iterations = math.ceil(
        (dataset_size * num_epochs) / (num_steps * batch_size))
    print(f"num_iterations: {num_iterations}")
    saved_generator_loss = 10000000.0
    start_index = 0
    total_row_count = dataset_size

    print("Iter, d_error_real, d_error_fake, g_error_fake")
    accuracy_dr = 0
    accuracy_df = 0
    apply_grads = True

    for iter in range(num_iterations):
        d_error_real, d_error_fake = 0, 0
        g_error_fake = 0

        for _k in range(num_steps):
            if start_index >= total_row_count:
                start_index = 0
            end_index = start_index + batch_size
            if (end_index - start_index) > total_row_count:
                end_index = total_row_count
            if end_index > total_row_count:
                end_index = total_row_count

            real_data = train_smiles_data.sequence_tensors[
                start_index:end_index, :, :]
            real_data_l = train_smiles_data.sequence_length_data[
                start_index:end_index]

            N = end_index - start_index
            fake_data, fake_data_l = generator(N)

            real_data = real_data.to(device)
            real_data_l = real_data_l.to(device)
            fake_data = fake_data.detach().to(device)
            fake_data_l = fake_data_l.to(device)

            if (apply_grads and (accuracy_dr > 90) and (accuracy_df > 90)):
                apply_grads = False
                filepath = os.path.join(base_model_path,
                                        "discriminator_" + str(iter) + ".pt")
                torch.save(discriminator, filepath)

            error_real, accuracy_dr = train_discriminator(
                discriminator, d_optimizer, real_data, real_data_l, 'real',
                apply_grads)
            error_fake, accuracy_df = train_discriminator(
                discriminator, d_optimizer, fake_data, fake_data_l, 'fake',
                apply_grads)

            d_error_real += error_real.mean()
            d_error_fake += error_fake.mean()

            start_index = end_index

        d_error_real = d_error_real / num_steps
        d_error_fake = d_error_fake / num_steps

        N = batch_size
        fake_data, fake_data_l = generator(N)
        fake_data = fake_data.to(device)
        fake_data_l = fake_data_l.to(device)

        g_error, accuracy_g = train_generator(discriminator, generator,
                                              g_optimizer, fake_data,
                                              fake_data_l)

        g_error_fake += g_error.mean()
        print(
            f"    Accuracy Numbers: D = {accuracy_dr}, {accuracy_df}, G = {accuracy_g}"
        )

        if (g_error_fake < saved_generator_loss) or (iter % 10 == 0):

            if (g_error_fake < saved_generator_loss):
                saved_generator_loss = g_error_fake
                base_folder = base_model_path
                pt_filepath = os.path.join(base_folder, "generator.pt")
                gen_txt_filepath = os.path.join(base_folder,
                                                "generatod_samples.txt")
            else:
                base_folder = os.path.join(base_model_path, "tens")
                pt_filepath = os.path.join(base_folder,
                                           "generator_" + str(iter) + ".pt")
                gen_txt_filepath = os.path.join(
                    base_folder, "generatod_samples" + str(iter) + ".txt")

            torch.save(generator, pt_filepath)
            with torch.no_grad():
                y, len = generator(500)
                generator_results = generator.get_sequences_from_tensor(y, len)
                with open(gen_txt_filepath, "w") as outfile:
                    outfile.write(f"Iter: {iter}, Loss: {g_error_fake}\n")
                    outfile.write("\n".join(generator_results))

        if iter % 1 == 0:
            print(
                f"{iter}, {d_error_real.item()}, {d_error_fake.item()}, {g_error_fake.item()}"
            )
            print(
                "--------------------------------------------------------------------------"
            )

    filepath = os.path.join(base_model_path, "discriminator.pt")
    torch.save(discriminator, filepath)
    filepath = os.path.join(base_model_path, "generator.pt")
    torch.save(generator, filepath)

    return filepath
コード例 #25
0
def _main():
    print_gpu_details()
    device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
    train_root = args.train_path

    image_size = 256
    cropped_image_size = 256
    print("set image folder")
    train_set = dset.ImageFolder(root=train_root,
                                 transform=transforms.Compose([
                                     transforms.Resize(image_size),
                                     transforms.CenterCrop(cropped_image_size),
                                     transforms.ToTensor()
                                 ]))

    normalizer_clf = transforms.Compose([
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    normalizer_discriminator = transforms.Compose([
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
    print('set data loader')
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True)

    # Network creation
    classifier = torch.load(args.classifier_path)
    classifier.eval()
    generator = Generator(gen_type=args.gen_type)
    discriminator = Discriminator(args.discriminator_norm, dis_type=args.gen_type)
    # init weights
    if args.generator_path is not None:
        generator.load_state_dict(torch.load(args.generator_path))
    else:
        generator.init_weights()
    if args.discriminator_path is not None:
        discriminator.load_state_dict(torch.load(args.discriminator_path))
    else:
        discriminator.init_weights()

    classifier.to(device)
    generator.to(device)
    discriminator.to(device)

    # losses + optimizers
    criterion_discriminator, criterion_generator = get_wgan_losses_fn()
    criterion_features = nn.L1Loss()
    criterion_diversity_n = nn.L1Loss()
    criterion_diversity_d = nn.L1Loss()
    generator_optimizer = optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999))
    discriminator_optimizer = optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999))

    num_of_epochs = args.epochs

    starting_time = time.time()
    iterations = 0
    # creating dirs for keeping models checkpoint, temp created images, and loss summary
    outputs_dir = os.path.join('wgan-gp_models', args.model_name)
    if not os.path.isdir(outputs_dir):
        os.makedirs(outputs_dir, exist_ok=True)
    temp_results_dir = os.path.join(outputs_dir, 'temp_results')
    if not os.path.isdir(temp_results_dir):
        os.mkdir(temp_results_dir)
    models_dir = os.path.join(outputs_dir, 'models_checkpoint')
    if not os.path.isdir(models_dir):
        os.mkdir(models_dir)
    writer = tensorboardX.SummaryWriter(os.path.join(outputs_dir, 'summaries'))

    z = torch.randn(args.batch_size, 128, 1, 1).to(device)  # a fixed noise for sampling
    z2 = torch.randn(args.batch_size, 128, 1, 1).to(device)  # a fixed noise for diversity sampling
    fixed_features = 0
    fixed_masks = 0
    fixed_features_diversity = 0
    first_iter = True
    print("Starting Training Loop...")
    for epoch in range(num_of_epochs):
        for data in train_loader:
            train_type = random.choices([1, 2], [args.train1_prob, 1-args.train1_prob]) # choose train type
            iterations += 1
            if iterations % 30 == 1:
                print('epoch:', epoch, ', iter', iterations, 'start, time =', time.time() - starting_time, 'seconds')
                starting_time = time.time()
            images, _ = data
            images = images.to(device)  # change to gpu tensor
            images_discriminator = normalizer_discriminator(images)
            images_clf = normalizer_clf(images)
            _, features = classifier(images_clf)
            if first_iter: # save batch of images to keep track of the model process
                first_iter = False
                fixed_features = [torch.clone(features[x]) for x in range(len(features))]
                fixed_masks = [torch.ones(features[x].shape, device=device) for x in range(len(features))]
                fixed_features_diversity = [torch.clone(features[x]) for x in range(len(features))]
                for i in range(len(features)):
                    for j in range(fixed_features_diversity[i].shape[0]):
                        fixed_features_diversity[i][j] = fixed_features_diversity[i][j % 8]
                grid = vutils.make_grid(images_discriminator, padding=2, normalize=True, nrow=8)
                vutils.save_image(grid, os.path.join(temp_results_dir, 'original_images.jpg'))
                orig_images_diversity = torch.clone(images_discriminator)
                for i in range(orig_images_diversity.shape[0]):
                    orig_images_diversity[i] = orig_images_diversity[i % 8]
                grid = vutils.make_grid(orig_images_diversity, padding=2, normalize=True, nrow=8)
                vutils.save_image(grid, os.path.join(temp_results_dir, 'original_images_diversity.jpg'))
            # Select a features layer to train on
            features_to_train = random.randint(1, len(features) - 2) if args.fixed_layer is None else args.fixed_layer
            # Set masks
            masks = [features[i].clone() for i in range(len(features))]
            setMasksPart1(masks, device, features_to_train) if train_type == 1 else setMasksPart2(masks, device, features_to_train)
            discriminator_loss_dict = train_discriminator(generator, discriminator, criterion_discriminator, discriminator_optimizer, images_discriminator, features, masks)
            for k, v in discriminator_loss_dict.items():
                writer.add_scalar('D/%s' % k, v.data.cpu().numpy(), global_step=iterations)
                if iterations % 30 == 1:
                    print('{}: {:.6f}'.format(k, v))
            if iterations % args.discriminator_steps == 1:
                generator_loss_dict = train_generator(generator, discriminator, criterion_generator, generator_optimizer, images.shape[0], features,
                                                      criterion_features, features_to_train, classifier, normalizer_clf, criterion_diversity_n,
                                                      criterion_diversity_d, masks, train_type)

                for k, v in generator_loss_dict.items():
                    writer.add_scalar('G/%s' % k, v.data.cpu().numpy(), global_step=iterations//5 + 1)
                    if iterations % 30 == 1:
                        print('{}: {:.6f}'.format(k, v))

            # Save generator and discriminator weights every 1000 iterations
            if iterations % 1000 == 1:
                torch.save(generator.state_dict(), models_dir + '/' + args.model_name + 'G')
                torch.save(discriminator.state_dict(), models_dir + '/' + args.model_name + 'D')
            # Save temp results
            if args.keep_temp_results:
                if iterations < 10000 and iterations % 1000 == 1 or iterations % 2000 == 1:
                    # regular sampling (batch of different images)
                    first_features = True
                    fake_images = None
                    fake_images_diversity = None
                    for i in range(1, 5):
                        one_layer_mask = isolate_layer(fixed_masks, i, device)
                        if first_features:
                            first_features = False
                            fake_images = sample(generator, z, fixed_features, one_layer_mask)
                            fake_images_diversity = sample(generator, z, fixed_features_diversity, one_layer_mask)
                        else:
                            tmp_fake_images = sample(generator, z, fixed_features, one_layer_mask)
                            fake_images = torch.vstack((fake_images, tmp_fake_images))
                            tmp_fake_images = sample(generator, z2, fixed_features_diversity, one_layer_mask)
                            fake_images_diversity = torch.vstack((fake_images_diversity, tmp_fake_images))
                    grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=8)
                    vutils.save_image(grid, os.path.join(temp_results_dir, 'res_iter_{}.jpg'.format(iterations // 1000)))
                    # diversity sampling (8 different images each with few different noises)
                    grid = vutils.make_grid(fake_images_diversity, padding=2, normalize=True, nrow=8)
                    vutils.save_image(grid, os.path.join(temp_results_dir, 'div_iter_{}.jpg'.format(iterations // 1000)))

                if iterations % 20000 == 1:
                    torch.save(generator.state_dict(), models_dir + '/' + args.model_name + 'G_' + str(iterations // 15000))
                    torch.save(discriminator.state_dict(), models_dir + '/' + args.model_name + 'D_' + str(iterations // 15000))
コード例 #26
0
    zeros_label = Variable(torch.zeros(BATCH_SIZE))

if __name__ == "__main__":
    print 'main'

    gen_model = Tiramisu()
    disc_model = Discriminator()

    if is_gpu_mode:
        gen_model.cuda()
        disc_model.cuda()
        # gen_model = torch.nn.DataParallel(gen_model).cuda()
        # disc_model = torch.nn.DataParallel(disc_model).cuda()

    optimizer_gen = torch.optim.Adam(gen_model.parameters(), lr=LEARNING_RATE_GENERATOR)
    optimizer_disc = torch.optim.Adam(disc_model.parameters(), lr=LEARNING_RATE_DISCRIMINATOR)

    # read imgs
    image_buff_read_index = 0

    # pytorch style
    input_img = np.empty(shape=(BATCH_SIZE, 3, data_loader.INPUT_IMAGE_WIDTH, data_loader.INPUT_IMAGE_HEIGHT))
    
    answer_img = np.empty(shape=(BATCH_SIZE, 3, data_loader.INPUT_IMAGE_WIDTH, data_loader.INPUT_IMAGE_HEIGHT))
    
    motion_vec_img = np.empty(shape=(BATCH_SIZE, 1, data_loader.INPUT_IMAGE_WIDTH, data_loader.INPUT_IMAGE_HEIGHT))
    
    fake_motion_vec_img = np.empty(shape=(BATCH_SIZE, 1, data_loader.INPUT_IMAGE_WIDTH, data_loader.INPUT_IMAGE_HEIGHT))
    
    # opencv style
    output_img_opencv = np.empty(shape=(data_loader.INPUT_IMAGE_WIDTH, data_loader.INPUT_IMAGE_HEIGHT, 3))
コード例 #27
0
# Print the model
print(netD)

# Initialize BCELoss function
criterion = nn.BCELoss()

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, cf.nz, 1, 1, device=device)

# Establish convention for real and fake labels during training
real_label = 1
fake_label = 0

# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=cf.lr, betas=(cf.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=cf.lr, betas=(cf.beta1, 0.999))

# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []


def train():
    # Training Loop
    iters = 0

    print("Starting Training Loop...")
    # For each epoch
    for epoch in range(cf.num_epochs):
コード例 #28
0
ファイル: simpleGan.py プロジェクト: ruchikachavhan/GANs
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


G = Generator().to(device)
G.apply(weights_init)

D = Discriminator().to(device)
D.apply(weights_init)

# Training the DCGANs

criterion = nn.BCELoss()
optimizerD = optim.Adam(D.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(G.parameters(), lr=0.0002, betas=(0.5, 0.999))

Dis_loss = []
gen_loss = []
for epoch in range(25):
    print("***************Epoch is *******************", epoch + 1)
    for i, data in enumerate(dataloader, 0):
        D.zero_grad()
        real, _ = data
        input = Variable(real).to(device)
        target = Variable(torch.ones(input.size()[0])).to(device)
        output = D(input)
        output = output.to(device)
        Derr_real = criterion(output, target)
        z = Variable(torch.randn(input.size()[0], 100, 1, 1)).to(device)
コード例 #29
0
def train(config):
    genAB = UNet(3, 3, bilinear=config.model.bilinear_upsample).cuda()
    init_weights(genAB, 'normal')
    genBA = UNet(3, 3, bilinear=config.model.bilinear_upsample).cuda()
    init_weights(genBA, 'normal')
    discrA = Discriminator(3).cuda()
    init_weights(discrA, 'normal')
    discrB = Discriminator(3).cuda()
    init_weights(discrB, 'normal')

    writer = SummaryWriter(config.name)
    data_train, data_test = datasets_by_name(config.dataset.name,
                                             config.dataset)
    train_dataloader = DataLoader(data_train,
                                  batch_size=config.bs,
                                  shuffle=True,
                                  num_workers=config.num_workers)
    test_dataloader = DataLoader(data_test,
                                 batch_size=config.bs,
                                 shuffle=True,
                                 num_workers=config.num_workers)

    idt_loss = nn.L1Loss()
    cycle_consistency = nn.L1Loss()
    l2_loss = nn.MSELoss()
    discriminator_loss = nn.BCELoss()
    lambda_idt, lambda_C, lambda_D = config.loss.lambda_idt, config.loss.lambda_C, config.loss.lambda_D

    optG = torch.optim.Adam(itertools.chain(genAB.parameters(),
                                            genBA.parameters()),
                            lr=config.train.lr,
                            betas=(config.train.beta1, 0.999))
    optD = torch.optim.Adam(itertools.chain(discrA.parameters(),
                                            discrB.parameters()),
                            lr=config.train.lr,
                            betas=(config.train.beta1, 0.999))

    genAB, genBA, discrA, discrB, optG, optD, start_epoch = load_if_exsists(
        config, genAB, genBA, discrA, discrB, optG, optD)

    for epoch in range(start_epoch, config.train.epochs):
        set_train([genAB, genBA, discrA, discrB])
        set_requires_grad([genAB, genBA, discrA, discrB], True)
        for i, (batch_A, batch_B) in enumerate(tqdm(train_dataloader)):
            batch_A, batch_B = batch_A.cuda(), batch_B.cuda()
            optG.zero_grad()
            loss_G, loss_D = 0, 0
            fake_B = genAB(batch_A)
            cycle_A = genBA(fake_B)
            fake_A = genBA(batch_B)
            cycle_B = genAB(fake_A)
            if lambda_idt > 0:
                loss_G += idt_loss(fake_B, batch_B) * lambda_idt
                loss_G += idt_loss(fake_A, batch_A) * lambda_idt
            if lambda_C > 0:
                loss_G += cycle_consistency(cycle_A, batch_A) * lambda_C
                loss_G += cycle_consistency(cycle_B, batch_B) * lambda_C
            if lambda_D > 0:
                set_requires_grad([discrA, discrB], False)
                discr_feedbackA = discrA(fake_A)
                discr_feedbackB = discrB(fake_B)
                loss_G += discriminator_loss(
                    discr_feedbackA,
                    torch.ones_like(discr_feedbackA)) * lambda_D
                loss_G += discriminator_loss(
                    discr_feedbackB,
                    torch.ones_like(discr_feedbackB)) * lambda_D
            loss_G.backward()
            torch.nn.utils.clip_grad_norm_(
                itertools.chain(genAB.parameters(), genBA.parameters()), 15)
            optG.step()
            if lambda_D > 0:
                set_requires_grad([discrA, discrB], True)
                loss_D_fake, loss_D_true = 0, 0
                optD.zero_grad()
                logits = discrA(fake_A.detach())
                loss_D_fake += discriminator_loss(logits,
                                                  torch.zeros_like(logits))

                logits = discrB(fake_B.detach())
                loss_D_fake += discriminator_loss(logits,
                                                  torch.zeros_like(logits))
                loss_D_fake.backward()
                torch.nn.utils.clip_grad_norm_(
                    itertools.chain(discrA.parameters(), discrB.parameters()),
                    15)
                optD.step()

                optD.zero_grad()
                logits = discrA(batch_A)
                loss_D_true += discriminator_loss(logits,
                                                  torch.ones_like(logits))
                logits = discrB(batch_B)
                loss_D_true += discriminator_loss(logits,
                                                  torch.ones_like(logits))
                loss_D_true.backward()
                torch.nn.utils.clip_grad_norm_(
                    itertools.chain(discrA.parameters(), discrB.parameters()),
                    15)
                optD.step()
                loss_D = loss_D_fake + loss_D_true
            if (i % config.train.verbose_period == 0):
                writer.add_scalar('train/loss_G', loss_G.item(),
                                  len(train_dataloader) * epoch + i)
                writer.add_scalar('train/pixel_error_A',
                                  l2_loss(fake_A, batch_A).mean().item(),
                                  len(train_dataloader) * epoch + i)
                writer.add_scalar('train/pixel_error_B',
                                  l2_loss(fake_B, batch_B).mean().item(),
                                  len(train_dataloader) * epoch + i)
                if lambda_D > 0:
                    writer.add_scalar('train/loss_D', loss_D.item(),
                                      len(train_dataloader) * epoch + i)
                    writer.add_scalar('train/mean_D_A',
                                      discr_feedbackA.mean().item(),
                                      len(train_dataloader) * epoch + i)
                    writer.add_scalar('train/mean_D_B',
                                      discr_feedbackB.mean().item(),
                                      len(train_dataloader) * epoch + i)
                for batch_i in range(fake_A.shape[0]):
                    concat = (torch.cat([fake_A[batch_i], batch_B[batch_i]],
                                        dim=-1) + 1.) / 2.
                    writer.add_image('train/fake_A_' + str(batch_i), concat,
                                     len(train_dataloader) * epoch + i)
                for batch_i in range(fake_B.shape[0]):
                    concat = (torch.cat([fake_B[batch_i], batch_A[batch_i]],
                                        dim=-1) + 1.) / 2.
                    writer.add_image('train/fake_B_' + str(batch_i), concat,
                                     len(train_dataloader) * epoch + i)
        if not config.validate:
            continue
        set_eval([genAB, genBA, discrA, discrB])
        set_requires_grad([genAB, genBA, discrA, discrB], False)
        loss_G, loss_D, discr_feedbackA_mean, discr_feedbackB_mean = 0, 0, 0, 0
        pixel_error_A, pixel_error_B = 0, 0
        for i, (batch_A, batch_B) in enumerate(tqdm(test_dataloader)):
            batch_A, batch_B = batch_A.cuda(), batch_B.cuda()
            fake_B = genAB(batch_A)
            cycle_A = genBA(fake_B)
            fake_A = genBA(batch_B)
            cycle_B = genAB(fake_A)
            pixel_error_A += l2_loss(fake_A, batch_A).mean()
            pixel_error_B += l2_loss(fake_B, batch_B).mean()
            if lambda_idt > 0:
                loss_G += idt_loss(fake_B, batch_B) * lambda_idt
                loss_G += idt_loss(fake_A, batch_A) * lambda_idt
            if lambda_C > 0:
                loss_G += cycle_consistency(cycle_A, batch_A) * lambda_C
                loss_G += cycle_consistency(cycle_B, batch_B) * lambda_C
            if lambda_D > 0:
                discr_feedbackA = discrA(fake_A)
                discr_feedbackB = discrB(fake_B)
                loss_G += discriminator_loss(
                    discr_feedbackA,
                    torch.ones_like(discr_feedbackA)) * lambda_D
                loss_G += discriminator_loss(
                    discr_feedbackB,
                    torch.ones_like(discr_feedbackB)) * lambda_D
                discr_feedbackA_mean += discr_feedbackA.mean()
                discr_feedbackB_mean += discr_feedbackB.mean()
            if lambda_D > 0:
                loss_D_fake, loss_D_true = 0, 0
                logits = discrA(fake_A.detach())
                loss_D_fake += discriminator_loss(logits,
                                                  torch.zeros_like(logits))
                logits = discrB(fake_B.detach())
                loss_D_fake += discriminator_loss(logits,
                                                  torch.zeros_like(logits))
                logits = discrA(batch_A)
                loss_D_true += discriminator_loss(logits,
                                                  torch.ones_like(logits))
                logits = discrB(batch_B)
                loss_D_true += discriminator_loss(logits,
                                                  torch.ones_like(logits))
                loss_D += loss_D_fake + loss_D_true
            if i == 0:
                for batch_i in range(fake_A.shape[0]):
                    concat = (torch.cat([fake_A[batch_i], batch_B[batch_i]],
                                        dim=-1) + 1.) / 2.
                    writer.add_image('val/fake_A_' + str(batch_i), concat,
                                     epoch)
                for batch_i in range(fake_B.shape[0]):
                    concat = (torch.cat([fake_B[batch_i], batch_A[batch_i]],
                                        dim=-1) + 1.) / 2.
                    writer.add_image('val/fake_B_' + str(batch_i), concat,
                                     epoch)
        loss_G /= len(test_dataloader)
        pixel_error_A /= len(test_dataloader)
        pixel_error_B /= len(test_dataloader)
        writer.add_scalar('val/loss_G', loss_G.item(), epoch)
        writer.add_scalar('val/pixel_error_A', pixel_error_A.item(), epoch)
        writer.add_scalar('val/pixel_error_B', pixel_error_B.item(), epoch)
        if lambda_D > 0:
            loss_D /= len(test_dataloader)
            discr_feedbackA_mean /= len(test_dataloader)
            discr_feedbackB_mean /= len(test_dataloader)
            writer.add_scalar('val/loss_D', loss_D.item(), epoch)
            writer.add_scalar('val/mean_D_A', discr_feedbackA_mean.item(),
                              epoch)
            writer.add_scalar('val/mean_D_B', discr_feedbackB_mean.item(),
                              epoch)
        torch.save(
            {
                'genAB': genAB.state_dict(),
                'genBA': genBA.state_dict(),
                'discrA': discrA.state_dict(),
                'discrB': discrB.state_dict(),
                'optG': optG.state_dict(),
                'optD': optD.state_dict(),
                'epoch': epoch
            }, os.path.join(config.name, 'model.pth'))
コード例 #30
0
class SGAN:
    def __init__(self):
        self.read_dataset()
        if not os.path.exists(cfg.train.run_directory):
            os.makedirs(cfg.train.run_directory)
        with open(cfg.train.run_directory + 'params.txt', 'w') as f:
            f.write(str(vars(cfg)))

        self.build_model()

        return

    def read_dataset(self):
        self.train_loader, self.valid_loader = get_train_valid_loader(
            data_dir=cfg.dataset.data_dir,
            dataset_type=cfg.dataset.dataset_name,
            train_batch_size=cfg.train.batch_size,
            valid_batch_size=cfg.validation.batch_size,
            augment=False if cfg.dataset.dataset_name == 'mnist' else True,
            random_seed=cfg.dataset.seed,
            valid_size=cfg.train.valid_part,
            shuffle=True,
            show_sample=False,
            num_workers=multiprocessing.cpu_count(),
            pin_memory=False)

        return

    def real_data_target(self, size):
        '''
        Tensor containing ones, with shape = size
        '''
        data = Variable(torch.ones(size, 1))
        if torch.cuda.is_available(): return data.cuda()
        return data

    def fake_data_target(self, size):
        '''
        Tensor containing zeros, with shape = size
        '''
        data = Variable(torch.zeros(size, 1))
        if torch.cuda.is_available(): return data.cuda()
        return data

    def train_discriminator(self, discriminator, optimizer, real_data,
                            fake_data, labels):
        # Reset gradients
        optimizer.zero_grad()

        # 1. Train on Real Data
        D_real = discriminator(cfg.dataset.dataset_name, real_data, labels)
        # Calculate error and backpropagate
        D_loss_real = self.loss(D_real,
                                self.real_data_target(real_data.size(0)))
        D_loss_real.backward()

        # 2. Train on Fake Data
        D_fake = discriminator(cfg.dataset.dataset_name, fake_data, labels)
        # Calculate error and backpropagate
        D_loss_fake = self.loss(D_fake,
                                self.fake_data_target(fake_data.size(0)))
        D_loss_fake.backward()

        if cfg.train.loss_type == cfg.VANILLA:
            D_loss = D_loss_real + D_loss_fake
        elif cfg.train.loss_type == cfg.WGAN:
            D_loss = D_loss_fake - D_loss_real
            if cfg.train.use_GP:
                grad_penalty, gradient_norm = gradient_penalty(
                    discriminator, real_data, fake_data, cfg.train.gp_weight,
                    labels, cfg.dataset.dataset_name)
                D_loss += grad_penalty

        # Update weights with gradients
        optimizer.step()

        return D_real, D_fake, D_loss, D_loss_real, D_loss_fake

    def train_generator(self, generator, discriminator, optimizer, z_noise,
                        labels):
        # Reset gradients
        optimizer.zero_grad()

        # Sample noise and generate fake data
        G_fake_data = generator(cfg.dataset.dataset_name, z_noise, labels)
        D_fake = discriminator(cfg.dataset.dataset_name, G_fake_data, labels)
        # Calculate error and backpropagate
        G_loss = self.loss(D_fake, self.real_data_target(D_fake.size(0)))
        if cfg.train.loss_type == cfg.WGAN:
            G_loss = -1 * G_loss
        G_loss.backward()
        # Update weights with gradients
        optimizer.step()
        # Return error
        return G_fake_data, G_loss

    def build_model(self):
        if cfg.train.loss_type == cfg.VANILLA:
            self.loss = nn.BCELoss()
        elif cfg.train.loss_type == cfg.WGAN:
            self.loss = lambda logits, labels: torch.mean(logits)

        self.D_global = Discriminator(cfg.dataset.dataset_name)
        self.G_global = Generator(cfg.dataset.dataset_name)

        # Enable cuda if available
        if torch.cuda.is_available():
            self.D_global.cuda()
            self.G_global.cuda()

        # Optimizers
        self.D_global_optimizer = Adam(self.D_global.parameters(),
                                       lr=cfg.train.learning_rate,
                                       betas=(cfg.train.beta1, 0.999))
        self.G_global_optimizer = Adam(self.G_global.parameters(),
                                       lr=cfg.train.learning_rate,
                                       betas=(cfg.train.beta1, 0.999))

        self.D_pairs = []
        self.G_pairs = []
        self.D_pairs_optimizers = []
        self.G_pairs_optimizers = []

        self.D_msg_pairs = []
        self.D_msg_pairs_optimizers = []
        for id in range(1, cfg.train.N_pairs + 1):
            discriminator = Discriminator(cfg.dataset.dataset_name)
            generator = Generator(cfg.dataset.dataset_name)

            # Enable cuda if available
            if torch.cuda.is_available():
                generator.cuda()
                discriminator.cuda()

            self.D_pairs.append(discriminator)
            self.G_pairs.append(generator)

            # Optimizers
            D_optimizer = Adam(discriminator.parameters(),
                               lr=cfg.train.learning_rate,
                               betas=(cfg.train.beta1, 0.999))
            G_optimizer = Adam(generator.parameters(),
                               lr=cfg.train.learning_rate,
                               betas=(cfg.train.beta1, 0.999))

            self.D_pairs_optimizers.append(D_optimizer)
            self.G_pairs_optimizers.append(G_optimizer)

            # create msg Discriminator pair for G_global
            discriminator = Discriminator(cfg.dataset.dataset_name)

            # Enable cuda if available
            if torch.cuda.is_available():
                generator.cuda()
                discriminator.cuda()

            self.D_msg_pairs.append(discriminator)

            # Optimizers
            D_optimizer = Adam(discriminator.parameters(),
                               lr=cfg.train.learning_rate,
                               betas=(cfg.train.beta1, 0.999))

            self.D_msg_pairs_optimizers.append(D_optimizer)

        self.logger = Logger(model_name='DCGAN',
                             data_name='MNIST',
                             logdir=cfg.validation.validation_dir)

        return

    def run_validation(self, generator, discriminator, epoch, i, type_GAN):
        nrof_batches = len(self.valid_loader)
        for batch_idx, (valid_batch_images,
                        valid_batch_labels) in enumerate(self.valid_loader):
            valid_batch_size = len(valid_batch_images)
            valid_batch_labels = valid_batch_labels.type(torch.float32)
            valid_batch_z = torch.from_numpy(
                np.random.uniform(-1, 1,
                                  [valid_batch_size, cfg.train.z_dim]).astype(
                                      np.float32))

            if torch.cuda.is_available():
                valid_batch_images = valid_batch_images.cuda()
                valid_batch_labels = valid_batch_labels.cuda()
                valid_batch_z = valid_batch_z.cuda()

            G_fake_data = generator(cfg.dataset.dataset_name, valid_batch_z,
                                    valid_batch_labels)
            D_fake = discriminator(cfg.dataset.dataset_name, G_fake_data,
                                   valid_batch_labels)
            G_loss = self.loss(D_fake, self.real_data_target(D_fake.size(0)))

            D_real = discriminator(cfg.dataset.dataset_name,
                                   valid_batch_images, valid_batch_labels)
            D_loss_real = self.loss(
                D_real, self.real_data_target(valid_batch_images.size(0)))
            D_fake = discriminator(cfg.dataset.dataset_name, G_fake_data,
                                   valid_batch_labels)
            D_loss_fake = self.loss(D_fake,
                                    self.fake_data_target(D_fake.size(0)))
            D_loss = D_loss_real + D_loss_fake

            if len(valid_batch_images) == cfg.validation.batch_size:
                inception_score, std = Score.inception_score(G_fake_data)
                self.logger.log_score(inception_score, epoch, batch_idx,
                                      nrof_batches, type_GAN, 'IS_validation')

            # self.logger.log_images(generated_images, valid_batch_size, epoch, val_i, nrof_valid_batches,
            #                        type_GAN='pairs', format='NHWC')
            print("[Sample] d_loss: %.8f, g_loss: %.8f" % (D_loss, G_loss))
            if batch_idx > 0 and batch_idx % 15 == 0:
                generated_images = G_fake_data.detach().cpu()
                generated_images = generated_images.permute([0, 2, 3, 1])
                self.logger.log_images2(generated_images,
                                        epoch,
                                        batch_idx,
                                        type_GAN=type_GAN)

            batch_idx += 1

            # self.logger.save_models(self.G_pairs[id], self.D_pairs[id], epoch, 'pairs')
        return

    def copy_network_parameters(self, src_network, dest_network):
        params_src = src_network.named_parameters()
        params_dest = dest_network.named_parameters()

        dict_dest_params = dict(params_dest)

        for name_src, param_src in params_src:
            if name_src in dict_dest_params:
                dict_dest_params[name_src].data.copy_(param_src.data)
        return

    def run_train(self):
        for epoch in range(cfg.train.num_epochs):
            for id in range(cfg.train.N_pairs):
                print('Train pairs')
                self.train_pairs_epoch(id, epoch)
                self.copy_network_parameters(self.D_pairs[id],
                                             self.D_msg_pairs[id])
                self.train_G_global_epoch(id, epoch)
                self.train_D_global_epoch(id, epoch)
                self.run_validation(self.G_global, self.D_global, epoch, None,
                                    'global_pair')
                self.logger.save_models(self.G_global, self.D_global, epoch,
                                        'global_pair')
        return

    def train_D_global_epoch(self, id, epoch):
        # torch.set_default_tensor_type('torch.DoubleTensor')
        nrof_batches = len(self.train_loader)
        train_time = 0
        for batch_idx, (batch_images,
                        batch_labels) in enumerate(self.train_loader):
            start_time = time.time()
            batch_size = len(batch_images)
            batch_labels = batch_labels.type(torch.float32)
            batch_z = torch.from_numpy(
                np.random.uniform(-1, 1, [batch_size, cfg.train.z_dim]).astype(
                    np.float32))

            # 1. Train Discriminator
            if torch.cuda.is_available():
                batch_images = batch_images.cuda()
                batch_labels = batch_labels.cuda()
                batch_z = batch_z.cuda()
            # Generate fake data
            G_fake_data = self.G_pairs[id](cfg.dataset.dataset_name, batch_z,
                                           batch_labels).detach()
            # Train D
            D_real, D_fake, D_loss, D_loss_real, D_loss_fake = self.train_discriminator(
                self.D_global, self.D_global_optimizer, batch_images,
                G_fake_data, batch_labels)

            # 2. Train Generator
            G_fake_data, G_loss = self.train_generator(
                self.G_pairs[id], self.D_global, self.G_pairs_optimizers[id],
                batch_z, batch_labels)

            # 3. Train Discriminator twice
            # Generate fake data
            G_fake_data = self.G_pairs[id](cfg.dataset.dataset_name, batch_z,
                                           batch_labels).detach()
            # Train D
            D_real, D_fake, D_loss, D_loss_real, D_loss_fake = self.train_discriminator(
                self.D_global, self.D_global_optimizer, batch_images,
                G_fake_data, batch_labels)

            # Log error
            self.logger.log(D_loss, G_loss, epoch, batch_idx, nrof_batches,
                            'D0-' + str(id + 1))

            if len(batch_images) == cfg.train.batch_size:
                inception_score, std = Score.inception_score(G_fake_data)
                self.logger.log_score(inception_score, epoch, batch_idx,
                                      nrof_batches, 'D0-' + str(id + 1), 'IS')

            duration = time.time() - start_time
            print("Epoch: [%2d/%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
                  % (epoch, cfg.train.num_epochs, batch_idx, nrof_batches,
                     time.time() - start_time, D_loss, G_loss))
            train_time += duration
            if batch_idx > 0 and batch_idx % 101 == 0:
                self.run_validation(self.G_pairs[id], self.D_global, epoch,
                                    batch_idx, 'D_global_pairs-' + str(id + 1))
            batch_idx += 1

        self.logger.save_models(self.G_pairs[id], self.D_global, epoch,
                                'D_global_pairs-' + str(id + 1))

        return

    def train_G_global_epoch(self, id, epoch):
        # torch.set_default_tensor_type('torch.DoubleTensor')
        nrof_batches = len(self.train_loader)
        train_time = 0
        for batch_idx, (batch_images,
                        batch_labels) in enumerate(self.train_loader):
            start_time = time.time()
            batch_size = len(batch_images)
            batch_labels = batch_labels.type(torch.float32)
            batch_z = torch.from_numpy(
                np.random.uniform(-1, 1, [batch_size, cfg.train.z_dim]).astype(
                    np.float32))

            # 1. Train Discriminator
            if torch.cuda.is_available():
                batch_images = batch_images.cuda()
                batch_labels = batch_labels.cuda()
                batch_z = batch_z.cuda()
            # Generate fake data
            G_fake_data = self.G_global(cfg.dataset.dataset_name, batch_z,
                                        batch_labels).detach()
            # Train D
            D_real, D_fake, D_loss, D_loss_real, D_loss_fake = self.train_discriminator(
                self.D_msg_pairs[id], self.D_msg_pairs_optimizers[id],
                batch_images, G_fake_data, batch_labels)

            # 2. Train Generator
            G_fake_data, G_loss = self.train_generator(self.G_global,
                                                       self.D_msg_pairs[id],
                                                       self.G_global_optimizer,
                                                       batch_z, batch_labels)

            # 3. Train Discriminator twice
            # Generate fake data
            G_fake_data = self.G_global(cfg.dataset.dataset_name, batch_z,
                                        batch_labels).detach()
            # Train D
            D_real, D_fake, D_loss, D_loss_real, D_loss_fake = self.train_discriminator(
                self.D_msg_pairs[id], self.D_msg_pairs_optimizers[id],
                batch_images, G_fake_data, batch_labels)

            # Log error
            self.logger.log(D_loss, G_loss, epoch, batch_idx, nrof_batches,
                            'G0-' + str(id + 1))

            if len(batch_images) == cfg.train.batch_size:
                inception_score, std = Score.inception_score(G_fake_data)
                self.logger.log_score(inception_score, epoch, batch_idx,
                                      nrof_batches, 'G0-' + str(id + 1), 'IS')

            duration = time.time() - start_time
            print("Epoch: [%2d/%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
                  % (epoch, cfg.train.num_epochs, batch_idx, nrof_batches,
                     time.time() - start_time, D_loss, G_loss))
            train_time += duration
            if batch_idx > 0 and batch_idx % 101 == 0:
                self.run_validation(self.G_global, self.D_msg_pairs[id], epoch,
                                    batch_idx, 'G_global_pairs-' + str(id + 1))
            batch_idx += 1

        self.logger.save_models(self.G_global, self.D_msg_pairs[id], epoch,
                                'G_global_pairs-' + str(id + 1))

        return

    def train_pairs_epoch(self, id, epoch):
        nrof_batches = len(self.train_loader)
        train_time = 0
        for batch_idx, (batch_images,
                        batch_labels) in enumerate(self.train_loader):
            start_time = time.time()
            batch_size = len(batch_images)
            batch_labels = batch_labels.type(torch.float32)
            batch_z = torch.from_numpy(
                np.random.uniform(-1, 1, [batch_size, cfg.train.z_dim]).astype(
                    np.float32))

            # 1. Train Discriminator
            if torch.cuda.is_available():
                batch_images = batch_images.cuda()
                batch_labels = batch_labels.cuda()
                batch_z = batch_z.cuda()
            # Generate fake data
            G_fake_data = self.G_pairs[id](cfg.dataset.dataset_name, batch_z,
                                           batch_labels).detach()
            # Train D
            D_real, D_fake, D_loss, D_loss_real, D_loss_fake = self.train_discriminator(
                self.D_pairs[id], self.D_pairs_optimizers[id], batch_images,
                G_fake_data, batch_labels)

            # 2. Train Generator
            G_fake_data, G_loss = self.train_generator(
                self.G_pairs[id], self.D_pairs[id],
                self.G_pairs_optimizers[id], batch_z, batch_labels)

            # 3. Train Discriminator twice
            # Generate fake data
            G_fake_data = self.G_pairs[id](cfg.dataset.dataset_name, batch_z,
                                           batch_labels).detach()
            # Train D
            D_real, D_fake, D_loss, D_loss_real, D_loss_fake = self.train_discriminator(
                self.D_pairs[id], self.D_pairs_optimizers[id], batch_images,
                G_fake_data, batch_labels)

            # Log error
            self.logger.log(D_loss, G_loss, epoch, batch_idx, nrof_batches,
                            str(id + 1))

            if len(batch_images) == cfg.train.batch_size:
                inception_score, std = Score.inception_score(G_fake_data)
                self.logger.log_score(inception_score, epoch, batch_idx,
                                      nrof_batches, str(id + 1), 'IS')

            duration = time.time() - start_time
            print("Epoch: [%2d/%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" \
                  % (epoch, cfg.train.num_epochs, batch_idx, nrof_batches,
                     time.time() - start_time, D_loss, G_loss))
            train_time += duration
            if batch_idx > 0 and batch_idx % 101 == 0:
                self.run_validation(self.G_pairs[id], self.D_pairs[id], epoch,
                                    batch_idx, 'pairs-' + str(id + 1))

        self.logger.save_models(self.G_pairs[id], self.D_pairs[id], epoch,
                                'pairs-' + str(id + 1))

        return
コード例 #31
0
def main():
    random.seed(SEED)
    np.random.seed(SEED)

    # Define Networks
    generator = Generator(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    discriminator = Discriminator(d_num_class, VOCAB_SIZE, d_emb_dim,
                                  d_filter_sizes, d_num_filters, d_dropout)
    target_lstm = TargetLSTM(VOCAB_SIZE, g_emb_dim, g_hidden_dim, opt.cuda)
    if opt.cuda:
        generator = generator.cuda()
        discriminator = discriminator.cuda()
        target_lstm = target_lstm.cuda()
    # Generate toy data using target lstm
    print('Generating data ...')
    generate_samples(target_lstm, BATCH_SIZE, GENERATED_NUM, POSITIVE_FILE)

    # Load data from file
    gen_data_iter = GenDataIter(POSITIVE_FILE, BATCH_SIZE)

    # Pretrain Generator using MLE
    gen_criterion = nn.NLLLoss(reduction='sum')
    gen_optimizer = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    print('Pretrain with MLE ...')
    for epoch in range(PRE_EPOCH_NUM):
        loss = train_epoch(generator, gen_data_iter, gen_criterion,
                           gen_optimizer)
        print('Epoch [%d] Model Loss: %f' % (epoch, loss))
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
        eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
        loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
        print('Epoch [%d] True Loss: %f' % (epoch, loss))

    # Pretrain Discriminator
    dis_criterion = nn.NLLLoss(reduction='sum')
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    print('Pretrain Discriminator ...')
    for epoch in range(5):
        generate_samples(generator, BATCH_SIZE, GENERATED_NUM, NEGATIVE_FILE)
        dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE, BATCH_SIZE)
        for _ in range(3):
            loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                               dis_optimizer)
            print('Epoch [%d], loss: %f' % (epoch, loss))
    # Adversarial Training
    rollout = Rollout(generator, 0.8)
    print('#####################################################')
    print('Start Adeversatial Training...\n')
    gen_gan_loss = GANLoss()
    gen_gan_optm = optim.Adam(generator.parameters())
    if opt.cuda:
        gen_gan_loss = gen_gan_loss.cuda()
    gen_criterion = nn.NLLLoss(reduction='sum')
    if opt.cuda:
        gen_criterion = gen_criterion.cuda()
    dis_criterion = nn.NLLLoss(reduction='sum')
    dis_optimizer = optim.Adam(discriminator.parameters())
    if opt.cuda:
        dis_criterion = dis_criterion.cuda()
    for total_batch in range(TOTAL_BATCH):
        ## Train the generator for one step
        for it in range(1):
            samples = generator.sample(BATCH_SIZE, g_sequence_len)
            # construct the input to the genrator, add zeros before samples and delete the last column
            zeros = torch.zeros((BATCH_SIZE, 1)).type(torch.LongTensor)
            if samples.is_cuda:
                zeros = zeros.cuda()
            inputs = Variable(
                torch.cat([zeros, samples.data], dim=1)[:, :-1].contiguous())
            targets = Variable(samples.data).contiguous().view((-1, ))
            # calculate the reward
            rewards = rollout.get_reward(samples, 16, discriminator)
            rewards = Variable(torch.Tensor(rewards))
            rewards = torch.exp(rewards).contiguous().view((-1, ))
            if opt.cuda:
                rewards = rewards.cuda()
            prob = generator.forward(inputs)
            loss = gen_gan_loss(prob, targets, rewards)
            gen_gan_optm.zero_grad()
            loss.backward()
            gen_gan_optm.step()

        if total_batch % 1 == 0 or total_batch == TOTAL_BATCH - 1:
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM, EVAL_FILE)
            eval_iter = GenDataIter(EVAL_FILE, BATCH_SIZE)
            loss = eval_epoch(target_lstm, eval_iter, gen_criterion)
            print('Batch [%d] True Loss: %f' % (total_batch, loss))
        rollout.update_params()

        for _ in range(4):
            generate_samples(generator, BATCH_SIZE, GENERATED_NUM,
                             NEGATIVE_FILE)
            dis_data_iter = DisDataIter(POSITIVE_FILE, NEGATIVE_FILE,
                                        BATCH_SIZE)
            for _ in range(2):
                loss = train_epoch(discriminator, dis_data_iter, dis_criterion,
                                   dis_optimizer)