def e_erp(t0, t1, g): """ Usage ----- The Edit distance with Real Penalty between trajectory t0 and t1. Parameters ---------- param t0 : len(t0)x2 numpy_array param t1 : len(t1)x2 numpy_array Returns ------- dtw : float The Dynamic-Time Warping distance between trajectory t0 and t1 """ n0 = len(t0) n1 = len(t1) C = np.zeros((n0 + 1, n1 + 1)) gt0_dist = map(lambda x: abs(eucl_dist(g, x)), t0) gt1_dist = map(lambda x: abs(eucl_dist(g, x)), t1) mdist = eucl_dist_traj(t0, t1) C[1:, 0] = sum(gt0_dist) C[0, 1:] = sum(gt1_dist) for i in np.arange(n0) + 1: for j in np.arange(n1) + 1: derp0 = C[i - 1, j] + gt0_dist[i - 1] derp1 = C[i, j - 1] + gt1_dist[j - 1] derp01 = C[i - 1, j - 1] + mdist[i - 1, j - 1] C[i, j] = min(derp0, derp1, derp01) erp = C[n0, n1] return erp
def e_hausdorff(t1, t2): """ Usage ----- hausdorff distance between trajectories t1 and t2. Parameters ---------- param t1 : len(t1)x2 numpy_array param t2 : len(t2)x2 numpy_array Returns ------- h : float, hausdorff from trajectories t1 and t2 """ mdist = eucl_dist_traj(t1, t2) l_t1 = len(t1) l_t2 = len(t2) # t1_dist = map(lambda it1: eucl_dist(t1[it1], t1[it1 + 1]), range(l_t1 - 1)) # t2_dist = map(lambda it2: eucl_dist(t2[it2], t2[it2 + 1]), range(l_t2 - 1)) t1_dist = [eucl_dist(t1[it1], t1[it1 + 1]) for it1 in range(l_t1 - 1)] t2_dist = [eucl_dist(t2[it2], t2[it2 + 1]) for it2 in range(l_t2 - 1)] h = max(e_directed_hausdorff(t1, t2, mdist, l_t1, l_t2, t2_dist), e_directed_hausdorff(t2, t1, mdist.T, l_t2, l_t1, t1_dist)) return h
def e_sspd(t1, t2): """ Usage ----- The sspd-distance between trajectories t1 and t2. The sspd-distance isjthe mean of the spd-distance between of t1 from t2 and the spd-distance of t2 from t1. Parameters ---------- param t1 : len(t1)x2 numpy_array param t2 : len(t2)x2 numpy_array Returns ------- sspd : float sspd-distance of trajectory t2 from trajectory t1 """ mdist = eucl_dist_traj(t1, t2) l_t1 = len(t1) l_t2 = len(t2) # t1_dist_orig = map(lambda it1: eucl_dist(t1[it1], t1[it1 + 1]), range(l_t1 - 1)) # t2_dist_orig = map(lambda it2: eucl_dist(t2[it2], t2[it2 + 1]), range(l_t2 - 1)) t1_dist = [eucl_dist(t1[it1], t1[it1 + 1]) for it1 in range(l_t1 - 1)] t2_dist = [eucl_dist(t2[it2], t2[it2 + 1]) for it2 in range(l_t2 - 1)] sspd = (e_spd(t1, t2, mdist, l_t1, l_t2, t2_dist) + e_spd(t2, t1, mdist.T, l_t2, l_t1, t1_dist)) / 2 return sspd
def compute_critical_values(P, Q, p, q, mdist, P_dist, Q_dist): """ Usage ----- Compute all the critical values between trajectories P and Q Parameters ---------- param P : px2 numpy_array, Trajectory P param Q : qx2 numpy_array, Trajectory Q param p : int, number of points in Trajectory P param q : int, number of points in Trajectory Q mdist : p x q numpy array, pairwise distance between points of trajectories t1 and t2 param P_dist: p x 1 numpy_array, distances between consecutive points in P param Q_dist: q x 1 numpy_array, distances between consecutive points in Q Returns ------- cc : list, all critical values between trajectories P and Q """ origin = eucl_dist(P[0], Q[0]) end = eucl_dist(P[-1], Q[-1]) end_point = max(origin, end) cc = set([end_point]) for i in range(p - 1): for j in range(q - 1): Lij = point_to_seg(Q[j], P[i], P[i + 1], mdist[i, j], mdist[i + 1, j], P_dist[i]) if Lij > end_point: cc.add(Lij) Bij = point_to_seg(P[i], Q[j], Q[j + 1], mdist[i, j], mdist[i, j + 1], Q_dist[j]) if Bij > end_point: cc.add(Bij) return sorted(list(cc))
def e_edr(t0, t1, eps): """ Usage ----- The Edit Distance on Real sequence between trajectory t0 and t1. Parameters ---------- param t0 : len(t0)x2 numpy_array param t1 : len(t1)x2 numpy_array eps : float Returns ------- edr : float The Longuest-Common-Subsequence distance between trajectory t0 and t1 """ n0 = len(t0) n1 = len(t1) # An (m+1) times (n+1) matrix C = [[0] * (n1 + 1) for _ in range(n0 + 1)] for i in range(1, n0 + 1): for j in range(1, n1 + 1): if eucl_dist(t0[i - 1], t1[j - 1]) < eps: subcost = 0 else: subcost = 1 C[i][j] = min(C[i][j - 1] + 1, C[i - 1][j] + 1, C[i - 1][j - 1] + subcost) edr = float(C[n0][n1]) / max([n0, n1]) return edr
def e_dtw(t0, t1): """ Usage ----- The Dynamic-Time Warping distance between trajectory t0 and t1. Parameters ---------- param t0 : len(t0)x2 numpy_array param t1 : len(t1)x2 numpy_array Returns ------- dtw : float The Dynamic-Time Warping distance between trajectory t0 and t1 """ n0 = len(t0) n1 = len(t1) C = np.zeros((n0 + 1, n1 + 1)) C[1:, 0] = float('inf') C[0, 1:] = float('inf') for i in np.arange(n0) + 1: for j in np.arange(n1) + 1: C[i, j] = eucl_dist(t0[i - 1], t1[j - 1]) + min(C[i, j - 1], C[i - 1, j - 1], C[i - 1, j]) dtw = C[n0, n1] return dtw
def frechet(P, Q): """ Usage ----- Compute the frechet distance between trajectories P and Q Parameters ---------- param P : px2 numpy_array, Trajectory P param Q : qx2 numpy_array, Trajectory Q Returns ------- frech : float, the frechet distance between trajectories P and Q """ p = len(P) q = len(Q) mdist = eucl_dist_traj(P, Q) #P_dist = map(lambda ip: eucl_dist(P[ip], P[ip + 1]), range(p - 1)) #Q_dist = map(lambda iq: eucl_dist(Q[iq], Q[iq + 1]), range(q - 1)) P_dist = [eucl_dist(P[ip], P[ip + 1]) for ip in range(p-1)] Q_dist = [eucl_dist(Q[iq], Q[iq + 1]) for iq in range(q-1)] cc = compute_critical_values(P, Q, p, q, mdist, P_dist, Q_dist) eps = cc[0] while (len(cc) != 1): m_i = int(len(cc) / 2 - 1) eps = cc[m_i] rep = decision_problem(P, Q, p, q, eps, mdist, P_dist, Q_dist) if rep: cc = cc[:m_i + 1] else: cc = cc[m_i + 1:] frech = eps return frech
def ordered_mixed_distance(si, ei, sj, ej, siei, sjej, siei_norm_2, sjej_norm_2): siei_norm = math.sqrt(siei_norm_2) sjej_norm = math.sqrt(sjej_norm_2) sisj = sj - si siej = ej - si u1 = (sisj[0] * siei[0] + sisj[1] * siei[1]) / siei_norm_2 u2 = (siej[0] * siei[0] + siej[1] * siei[1]) / siei_norm_2 ps = si + u1 * siei pe = si + u2 * siei cos_theta = max( -1, min(1, (sjej[0] * siei[0] + sjej[1] * siei[1]) / (siei_norm * sjej_norm))) theta = math.acos(cos_theta) # perpendicular distance lpe1 = eucl_dist(sj, ps) lpe2 = eucl_dist(ej, pe) if lpe1 == 0 and lpe2 == 0: dped = 0 else: dped = (lpe1 * lpe1 + lpe2 * lpe2) / (lpe1 + lpe2) # parallel_distance lpa1 = min(eucl_dist(si, ps), eucl_dist(ei, ps)) lpa2 = min(eucl_dist(si, pe), eucl_dist(ei, pe)) dpad = min(lpa1, lpa2) # angle_distance if 0 <= theta < HPI: dad = sjej_norm * math.sin(theta) elif HPI <= theta <= PI: dad = sjej_norm else: raise ValueError("WRONG THETA") fdist = (dped + dpad + dad) / 3 return fdist
def free_line(p, eps, s, dps1, dps2, ds): """ Usage ----- Return the free space in the segment s, from point p. This free space is the set of all point in s whose distance from p is at most eps. Since s is a segment, the free space is also a segment. We return a 1x2 array whit the fraction of the segment s which are in the free space. If no part of s are in the free space, return [-1,-1] Parameters ---------- param p : 1x2 numpy_array, centre of the circle param eps : float, radius of the circle param s : 2x2 numpy_array, line Returns ------- lf : 1x2 numpy_array fraction of segment which is in the free space (i.e [0.3,0.7], [0.45,1], ...) If no part of s are in the free space, return [-1,-1] """ px = p[0] py = p[1] s1x = s[0, 0] s1y = s[0, 1] s2x = s[1, 0] s2y = s[1, 1] if s1x == s2x and s1y == s2y: if eucl_dist(p, s[0]) > eps: lf = [-1, -1] else: lf = [0, 1] else: if point_to_seg(p, s[0], s[1], dps1, dps2, ds) > eps: # print("No Intersection") lf = [-1, -1] else: segl = eucl_dist(s[0], s[1]) segl2 = segl * segl intersect = circle_line_intersection(px, py, s1x, s1y, s2x, s2y, eps) if intersect[0][0] != intersect[1][0] or intersect[0][1] != intersect[1][1]: i1x = intersect[0, 0] i1y = intersect[0, 1] u1 = (((i1x - s1x) * (s2x - s1x)) + ((i1y - s1y) * (s2y - s1y))) / segl2 i2x = intersect[1, 0] i2y = intersect[1, 1] u2 = (((i2x - s1x) * (s2x - s1x)) + ((i2y - s1y) * (s2y - s1y))) / segl2 ordered_point = sorted((0, 1, u1, u2)) lf = ordered_point[1:3] else: if px == s1x and py == s1y: lf = [0, 0] elif px == s2x and py == s2y: lf = [1, 1] else: i1x = intersect[0][0] i1y = intersect[0][1] u1 = (((i1x - s1x) * (s2x - s1x)) + ((i1y - s1y) * (s2y - s1y))) / segl2 if 0 <= u1 <= 1: lf = [u1, u1] else: lf = [-1, -1] return lf