コード例 #1
0
def test_uniform():
    d = Uniform(5, 1000, seed=1)
    assert next(d) == 142
    assert next(d) == 587
    d = Uniform(5, 1000, seed=1)
    for x in d:
        assert x == 142
        break
コード例 #2
0
  def __init__(self, db, dic, parent_conn, src_dic, ent_size, tgt_dic=None, mode='local'):
    '''
    db  : db name
    dic : the relation dict of the config
    parent_conn: server conn
                 1, rel data
                 2, src nodes: n
                 3, tgt nodes: m
    src_dic : src node config dict
    ent_size: the number of nodes of each entity
    tgt_dic : tgt node config dict
             if is None, then tgt_dic == src_dic, e.g. user -> user
    mode : local (default), dump edge locally
         : u-level, dump edge and node in parent process
    '''
    self.parent_conn = parent_conn
    self.rel_dict = dic
    self.db_name  = db
    self.src_dic = src_dic
    self.tgt_dic = tgt_dic
    self.mode = mode
    self.ent_size = ent_size
    self.db_handler  = Store(db)
    self.db_handler.connect()
    # parameters of in/out distributions
    # TODO: other type of distribution
    if dic['in']['type'] == 'power_law':
      mind, maxd, midd = 0, -1, -1
      if 'min_degree' in dic['in']:
        mind = dic['in']['min_degree']
      if 'max_degree' in dic['in']:
        maxd = dic['in']['max_degree']
      if 'mid_degree' in dic['in']:
        midd = dic['in']['mid_degree']
      if isinstance(dic['in']['lambd'], list):
        self.indistr_ins = PWL(0, dic['in']['lambd'][0], dic['in']['lambd'][1], mind, maxd, midd)
      else:
        self.indistr_ins = PWL(0, dic['in']['lambd'], min_degree=mind, max_degree=maxd, mid_degree=midd)
    elif dic['in']['type'] == 'uniform':
      self.indistr_ins = Uniform(0, dic['in']['min'], dic['in']['max'])

    if dic['out']['type'] == 'power_law':
      mind, maxd, midd = 0, -1, -1
      if 'min_degree' in dic['out']:
        mind = dic['out']['min_degree']
      if 'max_degree' in dic['out']:
        maxd = dic['out']['max_degree']
      if 'mid_degree' in dic['out']:
        midd = dic['out']['mid_degree']
      if isinstance(dic['out']['lambd'], list):
        self.outdistr_ins = PWL(0, dic['out']['lambd'][0], dic['out']['lambd'][1], mind, maxd, midd)
      else:
        self.outdistr_ins = PWL(0, dic['out']['lambd'], min_degree=mind, max_degree=maxd, mid_degree=midd)
    elif dic['out']['type'] = 'uniform':
      self.outdistr_ins = Uniform(0, dic['out']['min'], dic['out']['max'])
コード例 #3
0
def main():
    sample_size = 5000
    delta = lambda x: chi2.ppf(0.97, x ** 2 - 1)
    r = 2
    s = 2

    U = RandomVar(Uniform(-np.pi, np.pi))
    x = RandomVar.operation(U, np.cos)
    y = RandomVar.operation(U, np.sin)

    xy = Joint(x, y)

    xy_sample = xy.sample(sample_size)

    # Adaptive algorithm
    adaptive_algorithm = AdaptiveAlgorithm(xy_sample, delta, r, s)

    non_adaptive_part = NonAdaptivePartition(xy_sample, bins=[50, 50]).run()
    final_partition = adaptive_algorithm.run()

    print(len(non_adaptive_part))
    print(len(final_partition))

    fig, ax = plt.subplots()
    adaptive_algorithm.plot_data(ax, color='red', alpha=0.5, markersize=2)
    adaptive_algorithm.plot_partition(ax, final_partition)
    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_title("Adaptive Partition and samples")
    plt.show()
コード例 #4
0
ファイル: main_SSTA.py プロジェクト: msabrishami/DFT
def test_triangle():
    """ Testing simple sum of simple distributions """
    d1 = Triangle(0, 4, 1)
    d2 = Triangle(10, 18, 11)
    d1 = Uniform(1, 2)
    d2 = Uniform(4, 6)
    T1, f1 = d1.pmf(100)
    T2, f2 = d2.pmf(100)

    plt.plot(T1, f1, color='r')
    plt.plot(T2, f2, color='b')
    T1, F1 = d1.cmf(100)
    T2, F2 = d2.cmf(100)
    plt.plot(T1, F1, color='g')
    plt.plot(T2, F2, color='c')

    opsum = SumOp()
    T, f_T = opsum.sum_num(d1, d2, 100).pmf()
    plt.plot(T, f_T, color='black', ls='-')
    plt.savefig("triangle-dist.pdf")
コード例 #5
0
ファイル: test.py プロジェクト: pdelong/Kademlia
def get_distribution(arguments, keys):
    if arguments['--zipf'] is not None:
        print("Using alpha", float(arguments['--zipf']))
        distribution = Zipf(keys, float(arguments['--zipf']))
    elif arguments['--uniform']:
        distribution = Uniform(keys)
    elif arguments['--linear'] is not None:
        distribution = Linear(keys, float(arguments['--linear']))
    else:
        distribution = Zipf(keys, 1)

    return distribution
コード例 #6
0
    def test_operation(self):
        u1 = Uniform(1, 2)
        m1 = Distribution.operation(u1, np.sin)
        self.seed()
        ground_truth = np.sin(u1.sample(10))
        self.seed()
        np.testing.assert_almost_equal(m1.sample(10), ground_truth)

        m1 = Distribution.operation(u1, np.cos)
        self.seed()
        ground_truth = np.cos(u1.sample(10))
        self.seed()
        np.testing.assert_almost_equal(m1.sample(10), ground_truth)

        m1 = Distribution.operation(u1, np.square)
        self.seed()
        ground_truth = np.square(u1.sample(10))
        self.seed()
        np.testing.assert_almost_equal(m1.sample(10), ground_truth)

        cube = lambda x: np.power(x, 3)
        m1 = Distribution.operation(u1, cube)
        self.seed()
        ground_truth = cube(u1.sample(10))
        self.seed()
        np.testing.assert_almost_equal(m1.sample(10), ground_truth)
コード例 #7
0
 def test_sum(self):
     u1 = Uniform(1, 2)
     u2 = Uniform(4, 5)
     m1 = Distribution.sum(u1, u2)
     self.seed()
     ground_truth = np.sum([u1.sample(10), u2.sample(10)], axis=0)
     self.seed()
     np.testing.assert_almost_equal(m1.sample(10), ground_truth)
コード例 #8
0
 def test_sample(self):
     u1 = Uniform(1, 2)
     u1.sample(5)
     u1.sample(10)