def test_J10(): """ Test a property of J from result 4 of the paper """ d = SD([1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 16]) j = J(d) h = H(d) s = sum(J(p) for p in d.pmf) assert_almost_equal(h, s - j)
def test_J10(): """ Test a property of J from result 4 of the paper """ d = SD([1/2, 1/4, 1/8, 1/16, 1/16]) j = J(d) h = H(d) s = sum(J(p) for p in d.pmf) assert h == pytest.approx(s-j)
def test_J6(): """ Test a property of J from result 2 of the paper with base 10 """ for i in range(2, 10): d = SD([1 / i] * i) d.set_base(10) yield assert_almost_equal, J(d), (i - 1) * (np.log10(i) - np.log10(i - 1))
def test_J11(): """ Test a property of J from result 5 of the paper """ pmf = np.array([1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 16]) N = len(pmf) d = SD(pmf) q = SD(1 / (N - 1) * (1 - pmf)) j2 = (N - 1) * (H(q) - np.log2(N - 1)) assert_almost_equal(J(d), j2)
def test_J8(): """ Test a property of J from result 1 of the paper using log bases """ for i in range(3, 10): d = SD([1 / i] * i) d.set_base(i) yield assert_true, J(d) < H(d)
def test_J7(): """ Test a property of J from result 1 of the paper """ for i in range(3, 10): d = SD([1 / i] * i) yield assert_true, J(d) < H(d)
def test_J4(): """ Test a property of J from result 2 of the paper """ for i in range(2, 10): d = SD([1 / i] * i) yield assert_almost_equal, J(d), (i - 1) * (np.log2(i) - np.log2(i - 1))
def test_J3(): """ Test a simple base case using Distribution """ d = D(['00', '11'], [1 / 2, 1 / 2]) assert_almost_equal(J(d), 1) assert_almost_equal(J(d, [0, 1]), 1)
def test_J2(): """ Test a simple base case using ScalarDistribution """ d = SD([1 / 2] * 2) assert_almost_equal(J(d), 1)
def test_J2(): """ Test a simple base case using ScalarDistribution """ d = SD([1/2]*2) assert J(d) == pytest.approx(1)
def test_J8(i): """ Test a property of J from result 1 of the paper using log bases """ d = SD([1/i]*i) d.set_base(i) assert J(d) < H(d)
def test_J7(i): """ Test a property of J from result 1 of the paper """ d = SD([1/i]*i) assert J(d) < H(d)
def test_J6(i): """ Test a property of J from result 2 of the paper with base 10 """ d = SD([1/i]*i) d.set_base(10) assert J(d) == pytest.approx((i-1)*(np.log10(i)-np.log10(i-1)))
def test_J5(i): """ Test a property of J from result 2 of the paper with a log base """ d = SD([1/i]*i) d.set_base('e') assert J(d) == pytest.approx((i-1)*(np.log(i)-np.log(i-1)))
def test_J4(i): """ Test a property of J from result 2 of the paper """ d = SD([1/i]*i) assert J(d) == pytest.approx((i-1)*(np.log2(i) - np.log2(i-1)))
def test_J3(): """ Test a simple base case using Distribution """ d = D(['00', '11'], [1/2, 1/2]) assert J(d) == pytest.approx(1) assert J(d, [0, 1]) == pytest.approx(1)
def test_J1(): """ Test that H = J for two probabilities """ assert_almost_equal(H(0.25), J(0.25))
def test_J1(): """ Test that H = J for two probabilities """ assert H(0.25) == pytest.approx(J(0.25))