コード例 #1
0
                BoxCoxEndogTransformer(lmbda2=0.4, neg_action="raise", floor=1e-12),
            ),
            ("arima", AutoARIMA(out_of_sample_size=60, max_p=4, max_q=4, max_d=4)),
        ]
    )
    pipeline_arima = GroupedPmdarima(model_template=pipeline_obj).fit(
        df=training_data,
        group_key_columns=group_key_columns,
        y_col="y",
        datetime_col="ds",
        silence_warnings=True,
    )

    # Save to local directory
    save_dir = "/tmp/group_pmdarima/pipeline.gpmd"
    pipeline_arima.save(save_dir)

    # Load from saved model
    loaded_model = GroupedPmdarima.load(save_dir)

    print("\nPipeline AutoARIMA results:\n", "-" * 40)
    get_and_print_model_metrics_params(loaded_model)

    print("\nPredictions:\n", "-" * 40)
    prediction = loaded_model.predict(
        n_periods=30, alpha=0.2, predict_col="predictions", return_conf_int=True
    )
    print(prediction.to_string())

    print("\nCross validation metric results:\n", "-" * 40)
    cross_validator = RollingForecastCV(h=30, step=365, initial=730)
コード例 #2
0
    training_data = generated_data.df
    group_key_columns = generated_data.key_columns

    # Build a GroupedPmdarima model by specifying an ARIMA model
    arima_obj = ARIMA(order=(2, 1, 3), out_of_sample_size=60)
    base_arima = GroupedPmdarima(model_template=arima_obj).fit(
        df=training_data,
        group_key_columns=group_key_columns,
        y_col="y",
        datetime_col="ds",
        silence_warnings=True,
    )

    # Save to local directory
    save_dir = "/tmp/group_pmdarima/arima.gpmd"
    base_arima.save(save_dir)

    # Load from saved model
    loaded_model = GroupedPmdarima.load(save_dir)

    print("\nARIMA results:\n", "-" * 40)
    get_and_print_model_metrics_params(loaded_model)

    prediction = loaded_model.predict(
        n_periods=30, alpha=0.02, predict_col="forecast", return_conf_int=True
    )
    print("\nPredictions:\n", "-" * 40)
    print(prediction.to_string())

    print("\nCross validation metric results:\n", "-" * 40)
    cross_validator = SlidingWindowForecastCV(h=90, step=365, window_size=730)
        test="kpss",
        max_d=4,
    )

    grouped_model = GroupedPmdarima(model_template=pipeline).fit(
        df=training_data,
        group_key_columns=group_key_columns,
        y_col="y",
        datetime_col="ds",
        ndiffs=ndiff,
        silence_warnings=True,
    )

    # Save to local directory
    save_dir = "/tmp/group_pmdarima/pipeline_override.gpmd"
    grouped_model.save(save_dir)

    # Load from saved model
    loaded_model = GroupedPmdarima.load(save_dir)

    print("\nAutoARIMA results:\n", "-" * 40)
    get_and_print_model_metrics_params(loaded_model)

    print("\nPredictions:\n", "-" * 40)
    prediction = loaded_model.predict(
        n_periods=30, alpha=0.1, predict_col="forecasted_values", return_conf_int=True
    )
    print(prediction.to_string())

    cv_evaluator = SlidingWindowForecastCV(h=90, step=120, window_size=180)
    cross_validation = loaded_model.cross_validate(