コード例 #1
0
ファイル: tests.py プロジェクト: rsvip/Django
 def test_aggregates(self):
     self.assertEqual(repr(Avg('a')), "Avg(F(a))")
     self.assertEqual(repr(Count('a')), "Count(F(a), distinct=False)")
     self.assertEqual(repr(Max('a')), "Max(F(a))")
     self.assertEqual(repr(Min('a')), "Min(F(a))")
     self.assertEqual(repr(StdDev('a')), "StdDev(F(a), sample=False)")
     self.assertEqual(repr(Sum('a')), "Sum(F(a))")
     self.assertEqual(repr(Variance('a', sample=True)), "Variance(F(a), sample=True)")
コード例 #2
0
    def get_registrations(self, interval, days, graph_key, select_box_value):
        """ Returns an array with new users count per interval."""
        try:
            conf_data = DashboardStats.objects.get(graph_key=graph_key)
            model_name = apps.get_model(conf_data.model_app_name,
                                        conf_data.model_name)
            kwargs = {}
            for i in conf_data.criteria.all():
                # fixed mapping value passed info kwargs
                if i.criteria_fix_mapping:
                    for key in i.criteria_fix_mapping:
                        # value => i.criteria_fix_mapping[key]
                        kwargs[key] = i.criteria_fix_mapping[key]

                # dynamic mapping value passed info kwargs
                if i.dynamic_criteria_field_name and select_box_value:
                    kwargs[i.dynamic_criteria_field_name] = select_box_value

            aggregate = None
            if conf_data.type_operation_field_name and conf_data.operation_field_name:
                operation = {
                    'Count': Count(conf_data.operation_field_name),
                    'Sum': Sum(conf_data.operation_field_name),
                    'Avg': Avg(conf_data.operation_field_name),
                    'StdDev': StdDev(conf_data.operation_field_name),
                    'Max': Max(conf_data.operation_field_name),
                    'Min': Min(conf_data.operation_field_name),
                    'Variance': Variance(conf_data.operation_field_name),
                }
                aggregate = operation[conf_data.type_operation_field_name]

            stats = QuerySetStats(model_name.objects.filter(**kwargs),
                                  conf_data.date_field_name, aggregate)
            # stats = QuerySetStats(User.objects.filter(is_active=True), 'date_joined')
            today = now()
            if days == 24:
                begin = today - timedelta(hours=days - 1)
                return stats.time_series(begin, today + timedelta(hours=1),
                                         interval)

            begin = today - timedelta(days=days - 1)
            return stats.time_series(begin, today + timedelta(days=1),
                                     interval)
        except (LookupError, FieldError, TypeError) as e:
            self.error_message = str(e)
            User = get_user_model()
            stats = QuerySetStats(User.objects.filter(is_active=True),
                                  'date_joined')
            today = now()
            if days == 24:
                begin = today - timedelta(hours=days - 1)
                return stats.time_series(begin, today + timedelta(hours=1),
                                         interval)
            begin = today - timedelta(days=days - 1)
            return stats.time_series(begin, today + timedelta(days=1),
                                     interval)
コード例 #3
0
    def get_operation(self, dkwargs=None):
        if not self.type_operation_field_name:
            self.type_operation_field_name = 'Count'
        if not self.operation_field_name:
            self.operation_field_name = 'id'

        operation = {
            'AvgCountPerInstance':
            lambda field_name, distinct, dkwargs: ExpressionWrapper(
                1.0 * Count(field_name, distinct=distinct, filter=dkwargs) /
                Count('id',
                      distinct=True,
                      filter=Q(**{field_name + "__isnull": False})),
                output_field=models.FloatField(),
            ),
            'Count':
            lambda field_name, distinct, dkwargs: Count(
                field_name, distinct=distinct, filter=dkwargs),
            'Sum':
            lambda field_name, distinct, dkwargs: Sum(
                field_name, distinct=distinct, filter=dkwargs),
            'Avg':
            lambda field_name, distinct, dkwargs: Avg(
                field_name, distinct=distinct, filter=dkwargs),
            'StdDev':
            lambda field_name, distinct, dkwargs: StdDev(field_name,
                                                         filter=dkwargs),
            'Max':
            lambda field_name, distinct, dkwargs: Max(field_name,
                                                      filter=dkwargs),
            'Min':
            lambda field_name, distinct, dkwargs: Min(field_name,
                                                      filter=dkwargs),
            'Variance':
            lambda field_name, distinct, dkwargs: Variance(field_name,
                                                           filter=dkwargs),
        }
        return operation[self.type_operation_field_name](
            self.operation_field_name, self.distinct, dkwargs)
コード例 #4
0
    def get_time_series(self, dynamic_criteria, all_criteria, request,
                        time_since, time_until, interval):
        """ Get the stats time series """
        model_name = apps.get_model(self.model_app_name, self.model_name)
        kwargs = {}
        dynamic_kwargs = []
        if request and not request.user.is_superuser and self.user_field_name:
            kwargs[self.user_field_name] = request.user
        for m2m in all_criteria:
            criteria = m2m.criteria
            # fixed mapping value passed info kwargs
            if criteria.criteria_fix_mapping:
                for key in criteria.criteria_fix_mapping:
                    # value => criteria.criteria_fix_mapping[key]
                    kwargs[key] = criteria.criteria_fix_mapping[key]

            # dynamic mapping value passed info kwargs
            dynamic_key = "select_box_dynamic_%i" % m2m.id
            if dynamic_key in dynamic_criteria:
                if dynamic_criteria[dynamic_key] != '':
                    dynamic_values = dynamic_criteria[dynamic_key]
                    dynamic_field_name = m2m.get_dynamic_criteria_field_name()
                    criteria_key = 'id' if dynamic_field_name == '' else dynamic_field_name
                    if isinstance(dynamic_values, (list, tuple)):
                        single_value = False
                    else:
                        dynamic_values = (dynamic_values, )
                        single_value = True

                    for dynamic_value in dynamic_values:
                        criteria_value = m2m.get_dynamic_choices(
                        )[dynamic_value]
                        if isinstance(criteria_value, (list, tuple)):
                            criteria_value = criteria_value[0]
                        else:
                            criteria_value = dynamic_value
                        if single_value:
                            kwargs[criteria_key] = criteria_value
                        else:
                            dynamic_kwargs.append(
                                Q(**{criteria_key: criteria_value}))

        aggregate_dict = {}
        i = 0
        if not dynamic_kwargs:
            dynamic_kwargs = [None]

        for dkwargs in dynamic_kwargs:
            i += 1
            if not self.type_operation_field_name:
                self.type_operation_field_name = 'Count'
            if not self.operation_field_name:
                self.operation_field_name = 'id'

            operation = {
                'AvgCountPerInstance':
                lambda field_name, distinct, dkwargs: ExpressionWrapper(
                    1.0 * Count(field_name, distinct=distinct, filter=dkwargs)
                    / Count('id',
                            distinct=True,
                            filter=Q(**{field_name + "__isnull": False})),
                    output_field=models.FloatField()),
                'Count':
                lambda field_name, distinct, dkwargs: Count(
                    field_name, distinct=distinct, filter=dkwargs),
                'Sum':
                lambda field_name, distinct, dkwargs: Sum(
                    field_name, distinct=distinct, filter=dkwargs),
                'Avg':
                lambda field_name, distinct, dkwargs: Avg(
                    field_name, distinct=distinct, filter=dkwargs),
                'StdDev':
                lambda field_name, distinct, dkwargs: StdDev(field_name,
                                                             filter=dkwargs),
                'Max':
                lambda field_name, distinct, dkwargs: Max(field_name,
                                                          filter=dkwargs),
                'Min':
                lambda field_name, distinct, dkwargs: Min(field_name,
                                                          filter=dkwargs),
                'Variance':
                lambda field_name, distinct, dkwargs: Variance(field_name,
                                                               filter=dkwargs),
            }
            aggregate_dict['agg_%i' %
                           i] = operation[self.type_operation_field_name](
                               self.operation_field_name, self.distinct,
                               dkwargs)

        # TODO: maybe backport values_list support back to django-qsstats-magic and use it again for the query
        time_range = {
            '%s__range' % self.date_field_name: (time_since, time_until)
        }
        qs = model_name.objects
        qs = qs.filter(**time_range)
        qs = qs.filter(**kwargs)
        if hasattr(time_since, 'tzinfo') and time_since.tzinfo:
            tzinfo = {'tzinfo': time_since.tzinfo}
        else:
            tzinfo = {}
        qs = qs.annotate(d=Trunc(self.date_field_name, interval, **tzinfo))
        qs = qs.values_list('d')
        qs = qs.order_by('d')
        qs = qs.annotate(**aggregate_dict)
        return qs