コード例 #1
0
    def train_dlib_detector(self):
        # Now let's do the training.  The train_simple_object_detector() function has a
        # bunch of options, all of which come with reasonable default values.  The next
        # few lines goes over some of these options.
        options = dlib.simple_object_detector_training_options()
        # Since faces are left/right symmetric we can tell the trainer to train a
        # symmetric detector.  This helps it get the most value out of the training
        # data.
        options.add_left_right_image_flips = True
        # The trainer is a kind of support vector machine and therefore has the usual
        # SVM C parameter.  In general, a bigger C encourages it to fit the training
        # data better but might lead to overfitting.  You must find the best C value
        # empirically by checking how well the trained detector works on a test set of
        # images you haven't trained on.  Don't just leave the value set at 5.  Try a
        # few different C values and see what works best for your data.
        options.C = 5
        # Tell the code how many CPU cores your computer has for the fastest training.
        options.num_threads = 4
        options.be_verbose = True
        options.detection_window_size = 60 * 80
        options.upsample_limit = 2

        # This function does the actual training.  It will save the final detector to
        # detector.svm.  The input is an XML file that lists the images in the training
        # dataset and also contains the positions of the face boxes.  To create your
        # own XML files you can use the imglab tool which can be found in the
        # tools/imglab folder.  It is a simple graphical tool for labeling objects in
        # images with boxes.  To see how to use it read the tools/imglab/README.txt
        # file.  But for this example, we just use the training.xml file included with
        # dlib.
        dlib.train_simple_object_detector("../data/training/training_mtb.xml", "../data/models/detector_mtb.svm", options)

        options.detection_window_size = 40 * 80
        dlib.train_simple_object_detector("../data/training/training_ped.xml", "../data/models/detector_ped.svm", options)
コード例 #2
0
    def train(self):
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = True
        options.C = 5

        dlib.train_simple_object_detector('../resources/model.xml',
                                          '../resources/model.svm', options)
コード例 #3
0
def train(request):
    import os
    import sys
    import glob

    import dlib
    from skimage import io

    # Now let's do the training.  The train_simple_object_detector() function has a
    # bunch of options, all of which come with reasonable default values.  The next
    # few lines goes over some of these options.
    options = dlib.simple_object_detector_training_options()
    # Since faces are left/right symmetric we can tell the trainer to train a
    # symmetric detector.  This helps it get the most value out of the training
    # data.
    options.add_left_right_image_flips = True
    # The trainer is a kind of support vector machine and therefore has the usual
    # SVM C parameter.  In general, a bigger C encourages it to fit the training
    # data better but might lead to overfitting.  You must find the best C value
    # empirically by checking how well the trained detector works on a test set of
    # images you haven't trained on.  Don't just leave the value set at 5.  Try a
    # few different C values and see what works best for your data.
    options.C = 3
    # Tell the code how many CPU cores your computer has for the fastest training.
    options.num_threads = multiprocessing.cpu_count()
    options.be_verbose = True


    training_xml_path = os.path.join(settings.BASE_DIR, "training.xml")
    dlib.train_simple_object_detector(training_xml_path, "detector.svm", options) 

    return HttpResponse('{"status": "completed"}', content_type="application/json")
コード例 #4
0
    def train(self):
        print("start training:")
        # 注:必须要将unicode转成普通字符串,否则dlib无法读取,这个编码上的bug也是坑了我两个小时
        train_xml_path = str(self.train_xml_path)
        model_path = str(self.model_path)
#         print(train_xml_path)
#         print(model_path)
#         print(chardet.detect(train_xml_path))
#         xml = 'F:\\Python\\Programs\\my_dlib_face_detection_application\\images\\test_object_detector\\cats_train\\cat.xml'
#         model = 'F:\\Python\\Programs\\my_dlib_face_detection_application\\images\\test_object_detector\\cats_train\\detector.svm'
#         print(xml)
#         print(model)
#         print(chardet.detect(xml))
        
        dlib.train_simple_object_detector(train_xml_path, model_path, self.options)
        
        print("Training accuracy: {}".format(dlib.test_simple_object_detector(train_xml_path, model_path)))
        print("The SVM model is saved in {0}".format(model_path))
        
        if self.log:
            self.log.append(u'--'*30)
            self.log.append("Training complete!")
            self.log.append("Training accuracy: {}".format(dlib.test_simple_object_detector(train_xml_path, model_path)))
            self.log.append("The SVM model is saved in {0}".format(model_path))
            self.log.append(u'--'*30)
コード例 #5
0
ファイル: fhog_detector.py プロジェクト: markpp/MTB
    def train_dlib_detector(self):
        # Now let's do the training.  The train_simple_object_detector() function has a
        # bunch of options, all of which come with reasonable default values.  The next
        # few lines goes over some of these options.
        options = dlib.simple_object_detector_training_options()
        # Since faces are left/right symmetric we can tell the trainer to train a
        # symmetric detector.  This helps it get the most value out of the training
        # data.
        #options.add_left_right_image_flips = True # seems to degrade performance in this case
        # The trainer is a kind of support vector machine and therefore has the usual
        # SVM C parameter.  In general, a bigger C encourages it to fit the training
        # data better but might lead to overfitting.  You must find the best C value
        # empirically by checking how well the trained detector works on a test set of
        # images you haven't trained on.  Don't just leave the value set at 5.  Try a
        # few different C values and see what works best for your data.
        options.C = 9
        # Tell the code how many CPU cores your computer has for the fastest training.
        options.num_threads = 4
        options.be_verbose = True
        options.upsample_limit = 2

        # This function does the actual training.  It will save the final detector to
        # detector.svm.  The input is an XML file that lists the images in the training
        # dataset and also contains the positions of the face boxes.  To create your
        # own XML files you can use the imglab tool which can be found in the
        # tools/imglab folder.  It is a simple graphical tool for labeling objects in
        # images with boxes.  To see how to use it read the tools/imglab/README.txt
        # file.  But for this example, we just use the training.xml file included with
        # dlib.
        #options.detection_window_size = 60 * 80
        options.detection_window_size = int((50 * 70)) # 468, 1.44
        dlib.train_simple_object_detector("../data/annotations/bb/training/combined_mtb.xml", "../data/models/detector_mtb.svm", options)

        options.detection_window_size = int((40 * 90)) # 448, 2.29
        dlib.train_simple_object_detector("../data/annotations/bb/training/combined_ped.xml", "../data/models/detector_ped.svm", options)
コード例 #6
0
def trainObjects(images_folder):
    folders = os.listdir(images_folder)
    folders.remove('extras')
    detectors = []
    for folder in folders:
        xml = os.path.join(images_folder, "{0}\{0}.xml".format(folder))
        #print("{0}.svm".format(folder))
        dlib.train_simple_object_detector(xml, "{0}.svm".format(folder),
                                          options)
        # save all detectors as list
        detectors.append("{0}.svm".format(folder))

    # Next, suppose you have trained multiple detectors and you want to run them
    # efficiently as a group. You can do this as follows
    detectorsModels = list()
    for detector in detectors:
        detectorsModels.append(dlib.fhog_object_detector(detector))

    # testing multiple detectors with image
    image = dlib.load_rgb_image(
        images_folder +
        '/head n shoulder/head-and-shoulder-best-oily-hair-shampoo.jpg')
    [boxes, confidences, detector_idxs
     ] = dlib.fhog_object_detector.run_multiple(detectorsModels,
                                                image,
                                                upsample_num_times=1,
                                                adjust_threshold=0.5)
    for i in range(len(boxes)):
        print("detector {} found box {} with confidence {}.".format(
            detector_idxs[i], boxes[i], confidences[i]))
    return detectorsModels, detectors
コード例 #7
0
def test_params(C, nuclear_norm):
    options = dlib.simple_object_detector_training_options()
    # our dataset is oriented, so definitely don't add in flips.
    options.add_left_right_image_flips = False
    options.C = C
    options.num_threads = 1
    options.be_verbose = False
    options.nuclear_norm_regularization_strength = nuclear_norm
    options.max_runtime_seconds = 5  # SET REALLY SMALL SO THE DEMO DOESN'T TAKE TO LONG, USE BIGGER VALUES FOR REAL USE!!!!!

    dlib.train_simple_object_detector(
        "images/small_face_dataset/cluster_001_train.xml", "detector1_.svm",
        options)

    # You can do a lot here.  Run the detector through
    # dlib.threshold_filter_singular_values() for instance to make sure it
    # learns something that will work once thresholded. We can also add a
    # penalty for having a lot of filters.   Run this program a few times and
    # try out different ways of penalizing the return from test_params() and
    # see what happens.
    result = dlib.test_simple_object_detector(
        "images/small_face_dataset/cluster_001_test.xml", "detector1_.svm")
    print("C = {}, nuclear_norm = {}".format(C, nuclear_norm))
    print("testing accuracy: ", result)
    sys.stdout.flush()
    # For settings with the same average precision, we should prefer smaller C
    # since smaller C has better generalization.
    return result.average_precision - C * 1e-8
コード例 #8
0
 def train_object_detector(self):
     self.__print_training_message('object detector')
     opt = dlib.simple_object_detector_training_options()
     opt.add_left_right_image_flips = True
     opt.C = 5
     opt.num_threads = self.cpu_cores
     opt.be_verbose = True
     opt.detection_window_size = self.window_size**2
     dlib.train_simple_object_detector(self.xml, DETECTOR_SVM, opt)
コード例 #9
0
    def test_train_xml_detector(self):
        # This effectively tests that we can successfully load images
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = True
        options.C = 1
        options.num_threads = 1

        dlib.train_simple_object_detector('images.xml', "test.svm", options)
        self.assertTrue(os.path.exists('./test.svm'))
コード例 #10
0
    def train_object_detector_for_path(self, xmlPath, outputPath):
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = False
        options.C = 5
        options.num_threads = 4
        options.be_verbose = True

        training_xml_path = os.path.join('tmp', xmlPath)
        dlib.train_simple_object_detector(training_xml_path, outputPath,
                                          options)
コード例 #11
0
def training_data(train_xml, test_xml, detectorName, Csvm=5):
    options = dlib.simple_object_detector_training_options()
    options.add_left_right_image_flips = True
    options.C = Csvm
    options.num_threads = 4
    options.be_verbose = True
    dlib.train_simple_object_detector(train_xml, detectorName + ".svm",
                                      options)
    print("Testing accuracy: {}".format(
        dlib.test_simple_object_detector(test_xml, detectorName + ".svm")))
コード例 #12
0
ファイル: run_test.py プロジェクト: menpo/conda-dlib
    def test_train_xml_detector(self):
        # This effectively tests that we can successfully load images
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = True
        options.C = 1
        options.num_threads = 1

        dlib.train_simple_object_detector(self.images_xml_path, './test.svm',
                                          options)
        self.assertTrue(os.path.exists('./test.svm'))
コード例 #13
0
    def train_shape_detector(self, output_name, input_xml):

        print('[INFO] training shape detector....')
        # get the training options
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = False
        options.C = 5
        options.num_threads = 4
        options.be_verbose = True

        # start training the model
        dlib.train_simple_object_detector(input_xml, output_name, options)
コード例 #14
0
    def train_with_dlib(self, obj_folder, detector_path, train_file_name, test_file_name):

        pdb.set_trace()
        logger = MyUtils.Tee("{0}/{1}.log".format(obj_folder, 'run'), 'w')
        logger.write('tee: dlib training called')

        logger.write('dlib training called')
        
        # Now let's do the training.  The train_simple_object_detector() function has a
        # bunch of options, all of which come with reasonable default values.  The next
        # few lines goes over some of these options.
        options = dlib.simple_object_detector_training_options()

        # The trainer is a kind of support vector machine and therefore has the usual
        # SVM C parameter.  In general, a bigger C encourages it to fit the training
        # data better but might lead to overfitting.  You must find the best C value
        # empirically by checking how well the trained detector works on a test set of
        # images you haven't trained on.  Don't just leave the value set at 5.  Try a
        # few different C values and see what works best for your data.
        options.C = 5

        # Tell the code how many CPU cores your computer has for the fastest training.
        options.num_threads = 2
        options.be_verbose = True

        training_xml_path = os.path.join(obj_folder, train_file_name)
        testing_xml_path = os.path.join(obj_folder, test_file_name)
        # This function does the actual training.  It will save the final detector to
        # detector.svm.  The input is an XML file that lists the images in the training
        # dataset and also contains the positions of the face boxes.  To create your
        # own XML files you can use the imglab tool which can be found in the
        # tools/imglab folder.  It is a simple graphical tool for labeling objects in
        # images with boxes.  To see how to use it read the tools/imglab/README.txt
        # file.  But for this example, we just use the training.xml file included with
        # dlib.
        logger.write('start training. saved detector path: ' + detector_path)
        dlib.train_simple_object_detector(training_xml_path, detector_path, options)
        logger.write( 'end training')


        # Now that we have a face detector we can test it.  The first statement tests
        # it on the training data.  It will logger.write((the precision, recall, and then)
        # average precision.
        logger.write("")  # Print blank line to create gap from previous output
        logger.write("Training accuracy: {}".format(
            dlib.test_simple_object_detector(training_xml_path, detector_path)))
        # However, to get an idea if it really worked without overfitting we need to
        # run it on images it wasn't trained on.  The next line does this.  Happily, we
        # see that the object detector works perfectly on the testing images.
        accuracy = dlib.test_simple_object_detector(testing_xml_path, "detector.svm")
        logger.write("Testing accuracy: {}".format(accuracy))
        logger.flush()
        return accuracy
コード例 #15
0
ファイル: boobs-dlib.py プロジェクト: mazurkin/boobs-detector
def train():
    options = dlib.simple_object_detector_training_options()
    options.add_left_right_image_flips = True
    options.C = 5
    options.num_threads = 4
    options.be_verbose = True
    options.detection_window_size = 1024
    options.match_eps = 0.1

    training_xml_path = "../pics/train/training-single.xml"
    # training_xml_path = "/home/external/moderation-p**n-detector/oboobs.dlibxml"

    dlib.train_simple_object_detector(training_xml_path, "../boobs.svm", options)

    print("Training accuracy: {}".format(dlib.test_simple_object_detector(training_xml_path, "../boobs.svm")))
コード例 #16
0
ファイル: training.py プロジェクト: remyzane/crawler-example
def training():
    """ 训练样本 """
    print('training samples ...')
    options = dlib.simple_object_detector_training_options()
    # 要识别的图形是否左右对称
    options.add_left_right_image_flips = True
    # C越大表示更好地去拟合训练集,当然也有可能造成过拟合。通过尝试不同C在测试集上的效果得到最佳值
    options.C = 5
    # 训练数据时开启的线程数
    options.num_threads = 2
    # 是否输出详细日志
    options.be_verbose = False

    dlib.train_simple_object_detector(samples_xml, samples_svm, options)
    print('finished.')
コード例 #17
0
def create_svm(request,pk,template_name='create_svm.html'):
     brand = get_object_or_404(Brands, pk=pk)
     data = {}
     data[ 'pk' ] = pk
     if request.method == 'POST':
        svm = request.POST.get('svm')
        cval = request.POST.get('cval')
        paths = Paths.objects.filter( brand_id = pk )
        if paths.exists():
            for pt in paths:
                train_path = pt.train_path
                train_path = os.path.relpath(train_path,settings.MEDIA_ROOT)
                test_path = pt.test_path
                test_path = os.path.relpath(test_path,settings.MEDIA_ROOT)
                svm_path = pt.svm_path
        #cmd = "python 35Hawkdetect.py /var/sites/thirdauth/static/images/companies/Stovekraft\ Private\ Limited\(mohsin\)/idea/test/ cola123.svm jpg"
        print svm_path
        print settings.MEDIA_ROOT+"/"+train_path+"/"
        faces_folder = settings.MEDIA_ROOT+"/"+train_path+"/"
        test_folder = settings.MEDIA_ROOT+"/"+test_path+"/"
        print faces_folder
        #dest = "/var/sites/thirdauth/static/images/companies/Stovekraft Private Limited(mohsin)/Docomo/svm"
        timestr = svm+time.strftime("_%m_%d_%H_%M")+".svm"
        print timestr
        outputpath = str(svm)+".svm"
        cval = cval
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = True
        options.C = int(cval)
        options.num_threads = 4
        options.be_verbose = True
        training_xml_path = os.path.join(str(faces_folder), "training.xml")
        testing_xml_path = os.path.join(str(test_folder), "training.xml")
        dlib.train_simple_object_detector(training_xml_path,outputpath, options)
        print("")
        print("Training accuracy: {}".format(
        dlib.test_simple_object_detector(training_xml_path, outputpath)))
        print("Testing accuracy: {}".format(
        dlib.test_simple_object_detector(testing_xml_path, outputpath)))
        result = "Training accuracy: {}"+format(dlib.test_simple_object_detector(training_xml_path, outputpath))+"  Testing accuracy: {}"+format(dlib.test_simple_object_detector(testing_xml_path, outputpath))
        os.rename(str(outputpath),timestr)
        if os.path.exists(str(svm_path)+"/"+str(timestr)):
             os.remove(str(svm_path)+"/"+str(timestr))
        shutil.move("/var/sites/thirdauth/"+str(timestr),str(svm_path))
        Svms(svm_name = str(timestr), brand_id = pk , company_id = brand.company_id ).save()
        return HttpResponse(result)
     else:
        return render(request,template_name, data ,context_instance=RequestContext(request))
コード例 #18
0
ファイル: serve.py プロジェクト: thomasfox/facedetection-demo
    def do_training(self):
        trainpath = os.path.join(self.translate_path(self.path), "train.txt")
        trainfile = open(trainpath, 'r')
        testdatadef = trainfile.readlines()
        trainfile.close()
        result = []

        images = []
        boxes = []
        for testdata in testdatadef:
            testvalues = testdata.split(";")
            boxes.append([
                dlib.rectangle(int(testvalues[0]), int(testvalues[1]),
                               int(testvalues[2]), int(testvalues[3]))
            ])
            imagepath = os.path.join(self.translate_path(self.path),
                                     testvalues[4].strip("\n"))
            result.append(testvalues[4])
            images.append(dlib.load_grayscale_image(imagepath))
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = True
        options.C = 5
        #        options.be_verbose = False
        start_time = time.clock()
        SimpleHTTPRequestHandler.trained_detector = dlib.train_simple_object_detector(
            images, boxes, options)
        self.step_times.append("Trained HOG + SVM Detection: %.3f s" %
                               (time.clock() - start_time))
        print(type(SimpleHTTPRequestHandler.trained_detector))
        return result
コード例 #19
0
    def fit(self,
            paths,
            annotations,
            target_path,
            vis=True,
            n_thread=1,
            C=5,
            verbose=True,
            add_left_right_image_flips=True):
        self.__option.num_threads = n_thread
        self.__option.C = C
        self.__option.be_verbose = verbose
        self.__option.add_left_right_image_flips = add_left_right_image_flips

        images = self.__prep_image(paths)
        print('[IMAGE SIZE] {:.2f} MB'.format(
            sys.getsizeof(images) / 1024 * 1024))
        annotations = self.__prep_annotations(annotations)
        print('[ANNOT SIZE] {:.2f} MB'.format(
            sys.getsizeof(annotations) / 1024 * 1024))

        self.__detector = dlib.train_simple_object_detector(
            images, annotations, self.__option)

        if vis:
            win = dlib.image_window()
            win.set_image(self.__detector)
            dlib.hit_enter_to_continue()

        self.__detector.save(target_path)
コード例 #20
0
def training(boxes, images):
    u"""学習"""
    # simple_object_detectorの訓練用オプションを取ってくる
    options = dlib.simple_object_detector_training_options()
    # 左右対照に学習データを増やすならtrueで訓練(メモリを使う)
    options.add_left_right_image_flips = True
    # SVMを使ってるのでC値を設定する必要がある
    options.C = 5
    # スレッド数指定
    options.num_threads = 16
    # 学習途中の出力をするかどうか
    options.be_verbose = True
    # 停止許容範囲
    # options.epsilon = 0.001
    options.epsilon = 0.01
    # サンプルを増やす最大数(大きすぎるとメモリを使う)
    options.upsample_limit = 1
    # 矩形検出の最小窓サイズ(80*80=6400となる)
    options.detection_window_size = 6400
    # options.detection_window_size = 100

    # 学習してsvmファイルを保存
    print('train...')
    detector = dlib.train_simple_object_detector(images, boxes, options)
    detector.save('./detector.svm')
コード例 #21
0
def train_detector_given_image_list(myImageList, Annotation_Path,
                                    DetectorOutputFolder):
    # Set Default Options
    options = dlib.simple_object_detector_training_options()
    images = []
    imagename = []
    boxes = []
    annotations = []
    for imagefilename in myImageList:

        images.append(cv2.imread(imagefilename))
        imagename.append(name)
        annotations = loadmat(os.path.join(Annotation_Path, name + ".xml"))
        bb = [
            dlib.rectangle(left=x, top=y, right=w, bottom=h)
            for (y, h, x, w) in annotations
        ]
        boxes.append(bb)

    # Train the object detector
    print("[INFO] Training the Support Vector Machine Deector")
    mySVM_Detector = dlib.train_simple_object_detector(images, boxes, options)

    # Save the detector
    print("[INFO] Saving SVM Detector")
    mySVM_Detector.save(DetectorOutputFolder)
コード例 #22
0
def train_detector(FolderName_Class, Annotation_Path, DetectorOutputFolder):
    # Set Default Options
    options = dlib.simple_object_detector_training_options()
    images = []
    imagename = []
    boxes = []
    annotations = []
    exts = [
        '.bmp', '.pbm', '.pgm', '.ppm', '.sr', '.ras', '.jpeg', '.jpg', '.jpe',
        '.jp2', '.tiff', '.tif', '.png'
    ]
    # Loop over all images inside the specified folder (single class)
    myImageList = os.listdir(FolderName_Class)
    for imagefilename in myImageList:
        name, ext = os.path.splitext(imagefilename)
        if ext in exts:
            images.append(cv2.imread(imagefilename))
            imagename.append(name)
            annotations = loadmat(os.path.join(Annotation_Path, name + ".xml"))
            bb = [
                dlib.rectangle(left=x, top=y, right=w, bottom=h)
                for (y, h, x, w) in annotations
            ]
            boxes.append(bb)

    # Train the object detector
    print("[INFO] Training the Support Vector Machine Deector")
    mySVM_Detector = dlib.train_simple_object_detector(images, boxes, options)

    # Save the detector
    print("[INFO] Saving SVM Detector")
    mySVM_Detector.save(DetectorOutputFolder)
コード例 #23
0
def model_training(imgs_path, xml_name):
    # 训练参数
    options = dlib.simple_object_detector_training_options()
    options.add_left_right_image_flips = True
    # 支持向量机的C参数,通常默认取为5.自己适当更改参数以达到最好的效果
    options.C = 5
    # 线程数,根据CPU核心数填写
    options.num_threads = 1
    options.be_verbose = True
    
    import time
    start_time = time.time()
    print(' -- 开始训练 -- ')
    dlib.train_simple_object_detector(imgs_path + xml_name, 'detector.svm', options)
    # print("训练精准度: {}".format(
    #     dlib.test_simple_object_detector(imgs_path + xml_name, "detector.svm")))
    print(f'--训练完成-- 耗时:{time.time() - start_time}s')
コード例 #24
0
def main():
    options = dlib.simple_object_detector_training_options()
    options.add_left_right_image_flips = True
    options.C = 4
    options.epsilon = 0.05
    options.num_threads = 8
    options.be_verbose = True

    training_xml_path = os.path.join(training_dir, file_name)
    # testing_xml_path = os.path.join(testing_dir, file_name)

    dlib.train_simple_object_detector(training_xml_path, detector_name,
                                      options)

    print("")
    print("================================")
    print("")
コード例 #25
0
    def do_train(self, training_xml_path, testing_xml_path, name_svm,
                 hyperparameters):
        options = dlib.simple_object_detector_training_options()

        options.detection_window_size = int(hyperparameters[0])
        # options.add_left_right_image_flips = True
        options.C = int(hyperparameters[2])
        options.num_threads = int(hyperparameters[1])
        options.epsilon = hyperparameters[3]
        options.be_verbose = True
        dlib.train_simple_object_detector(training_xml_path, name_svm, options)
        print("")  # Print blank line to create gap from previous output
        print("Training accuracy: {}".format(
            dlib.test_simple_object_detector(training_xml_path, name_svm)))
        print("Testing accuracy: {}".format(
            dlib.test_simple_object_detector(testing_xml_path, name_svm)))
        self.detector = name_svm
コード例 #26
0
def train():
    options = dlib.simple_object_detector_training_options()
    options.add_left_right_image_flips = True
    options.C = 5
    options.num_threads = 4
    options.be_verbose = True
    options.detection_window_size = 1024
    options.match_eps = 0.1

    training_xml_path = "../pics/train/training-single.xml"
    # training_xml_path = "/home/external/moderation-p**n-detector/oboobs.dlibxml"

    dlib.train_simple_object_detector(training_xml_path, "../boobs.svm",
                                      options)

    print("Training accuracy: {}".format(
        dlib.test_simple_object_detector(training_xml_path, "../boobs.svm")))
コード例 #27
0
def train(training_xml_path, model_file="detector.svm"):

    assert os.path.isfile(training_xml_path)
    assert not os.path.isfile(model_file)

    # Now let's do the training.  The train_simple_object_detector() function has a
    # bunch of options, all of which come with reasonable default values.  The next
    # few lines goes over some of these options.
    options = dlib.simple_object_detector_training_options()
    # Since faces are left/right symmetric we can tell the trainer to train a
    # symmetric detector.  This helps it get the most value out of the training
    # data.
    options.add_left_right_image_flips = True
    # The trainer is a kind of support vector machine and therefore has the usual
    # SVM C parameter.  In general, a bigger C encourages it to fit the training
    # data better but might lead to overfitting.  You must find the best C value
    # empirically by checking how well the trained detector works on a test set of
    # images you haven't trained on.  Don't just leave the value set at 5.  Try a
    # few different C values and see what works best for your data.
    options.C = 10
    # Tell the code how many CPU cores your computer has for the fastest training.
    options.num_threads = 6
    options.epsilon = 0.001
    options.be_verbose = True

    options.detection_window_size = 4096  #(32, 32)
    # options.upsample_limit = 8

    # This function does the actual training.  It will save the final detector to
    # detector.svm.  The input is an XML file that lists the images in the training
    # dataset and also contains the positions of the face boxes.  To create your
    # own XML files you can use the imglab tool which can be found in the
    # tools/imglab folder.  It is a simple graphical tool for labeling objects in
    # images with boxes.  To see how to use it read the tools/imglab/README.txt
    # file.  But for this example, we just use the training.xml file included with
    # dlib.

    print("Goingt to train ...")
    dlib.train_simple_object_detector(training_xml_path, model_file, options)

    # Now that we have a face detector we can test it.  The first statement tests
    # it on the training data.  It will print(the precision, recall, and then)
    # average precision.
    print("")  # Print blank line to create gap from previous output
    print("Training accuracy: {}".format(
        dlib.test_simple_object_detector(training_xml_path, model_file)))
コード例 #28
0
def train(path_xml):
    # objeto contenedor de las opciones para la rutina train_simple_object_detector()
    # todas las opciones vienen con valores por defecto razonables
    # http://dlib.net/python/index.html#dlib.simple_object_detector_training_options

    options = dlib.simple_object_detector_training_options()

    options.C = 6  # parametro C de las SVM, valores grandes pueden llevar al overfitting
    options.add_left_right_image_flips = True  # para objetos simetricos como las caras
    options.be_verbose = True
    options.epsilon = 0.005  # epsilon de detencion, valores pequeños -> accurate training

    # utilizando la herramienta https://imglab.ml

    dlib.train_simple_object_detector(path_xml, "detector.svm", options)

    print("\nTraining accuracy: ",
          dlib.test_simple_object_detector(path_xml, "detector.svm"))
コード例 #29
0
def CREATE_SVM_DETECTOR():

    options = dlib.simple_object_detector_training_options()

    options.C = 5
    options.num_threads = 4
    options.be_verbose = True
    # options.add_left_right_image_flips = True

    fname_xml_train = 'data/xml/cat_BHS.xml'
    # fname_xml_test  = 'data/xml/testing.xml'

    dlib.train_simple_object_detector(fname_xml_train, "cat_detector.svm",
                                      options)

    print()
    print("Training accuracy: {}".format(
        dlib.test_simple_object_detector(fname_xml_train, "cat_detector.svm")))
コード例 #30
0
ファイル: Learn.py プロジェクト: percy9427/AutoTester
def learnFeatureDlib(feat, tester):
    testImages = []
    testImageBoxes = []
    featureName = feat.featureName
    pathToClippingDirectory = tester.basePath + "Training/" + featureName + '/TrainDlib'
    pathToTrainingDirectory = pathToClippingDirectory + '/' + 'dlibTraining'
    trainingList = getListOfDlibSamples(pathToTrainingDirectory)
    for file in trainingList:
        testImageColor = cv2.imread(file)
        testImages.append(cv2.cvtColor(testImageColor, cv2.COLOR_BGR2GRAY))
        numRows, numCols, numColors = testImageColor.shape
        boxList = getBoundingBoxList(file)
        boxesForThisImage = []
        if not boxList is None:
            for box in boxList:
                left = box[0]
                right = left + feat.roiSideLength
                top = box[1]
                bottom = top + feat.roiSideLength
                print("Left: " + str(left) + ", Top: " + str(top) + "Right: " +
                      str(right) + ", Bottom: " + str(bottom))
                #            if left<0 or top<0 or right>=numCols or bottom>=numRows:
                #                print("Tossed box: Left: " + str(left) + ", Top: " + str(top) + "Right: " + str(right) + ", Bottom: " + str(bottom))
                #            else:
                #            testBox=dlib.rectangle(left=box.xLeft,top=box.yTop,right=box.xRight,bottom=box.yBottom)
                testBox = dlib.rectangle(left=left,
                                         top=top,
                                         right=right,
                                         bottom=bottom)
                boxesForThisImage.append(testBox)
        testImageBoxes.append(boxesForThisImage)
    # Now let's do the training.  The train_simple_object_detector() function has a
    # bunch of options, all of which come with reasonable default values.  The next
    # few lines goes over some of these options.
    options = dlib.simple_object_detector_training_options()
    # Since faces are left/right symmetric we can tell the trainer to train a
    # symmetric detector.  This helps it get the most value out of the training
    # data.
    # The trainer is a kind of support vector machine and therefore has the usual
    # SVM C parameter.  In general, a bigger C encourages it to fit the training
    # data better but might lead to overfitting.  You must find the best C value
    # empirically by checking how well the trained detector works on a test set of
    # images you haven't trained on.  Don't just leave the value set at 5.  Try a
    # few different C values and see what works best for your data.
    options.C = feat.cParmValue
    options.U = feat.upSampling
    # Tell the code how many CPU cores your computer has for the fastest training.
    options.num_threads = 4
    options.be_verbose = True
    detector = dlib.train_simple_object_detector(testImages, testImageBoxes,
                                                 options)
    # We could save this detector to disk by uncommenting the following.
    detectorLocation = pathToClippingDirectory + "/detector.svm"
    detector.save(detectorLocation)
    print('Dlib Training Done')
    feat.model = detector
コード例 #31
0
    def step4(self, btn):
        #Based on dlib example:
        # Now let's do the training.  The train_simple_object_detector() function has a
        # bunch of options, all of which come with reasonable default values.  The next
        # few lines goes over some of these options.

        options = dlib.simple_object_detector_training_options()

        # Since faces are left/right symmetric we can tell the trainer to train a
        # symmetric detector.  This helps it get the most value out of the training
        # data.

        options.add_left_right_image_flips = True

        # The trainer is a kind of support vector machine and therefore has the usual
        # SVM C parameter.  In general, a bigger C encourages it to fit the training
        # data better but might lead to overfitting.  You must find the best C value
        # empirically by checking how well the trained detector works on a test set of
        # images you haven't trained on.  Don't just leave the value set at 5.  Try a
        # few different C values and see what works best for your data.

        options.C = 5

        # Tell the code how many CPU cores your computer has for the fastest training.
        options.num_threads = 4
        options.be_verbose = True

        trainingXML = os.path.join(self.tmp, 'training.xml')
        #Ideally there would be half training, half testing:
        testingXML = os.path.join(self.tmp, "training.xml")

        # This function does the actual training.  It will save the final detector to
        # detector.svm.  The input is an XML file that lists the images in the training
        # dataset and also contains the positions of the face boxes.  To create your
        # own XML files you can use the imglab tool which can be found in the
        # tools/imglab folder.  It is a simple graphical tool for labeling objects in
        # images with boxes.
        dlib.train_simple_object_detector(
            trainingXML, os.path.join(self.tmp, "detector.svm"), options)
        print("Training accuracy: {}".format(
            dlib.test_simple_object_detector(
                trainingXML, os.path.join(self.tmp, "detector.svm"))))
コード例 #32
0
def train_detector(save_name):
    #Point to folder
    folder = "../data/TrainHOG/"
    coins_folder = folder

    #Now train a simple object detector using dlib
    #Using the folowing options
    options = dlib.simple_object_detector_training_options()

    options.add_left_right_image_flips = True
    options.C = 10
    # Tell the code how many CPU cores your computer has for the fastest training.
    options.num_threads = 4
    options.be_verbose = True

    training_xml_path = os.path.join(coins_folder, "merged.xml")

    detective = os.path.join(coins_folder, str(save_name))
    dlib.train_simple_object_detector(training_xml_path, detective, options)
    print("done training")
コード例 #33
0
    def trainer(self, imgs, ants):
        self.images = imgs
        self.annots = ants
        options = dlib.simple_object_detector_training_options()
        options.add_left_right_image_flips = True
        options.C = 5
        options.num_threads = 4
        options.be_verbose = True
        detector = dlib.train_simple_object_detector(self.images, self.annots,
                                                     options)

        return detector
コード例 #34
0
def simple_training(trainpath="Training/", nbthreads=4, cvalue=5):
    train_folder = trainpath
    #Para treinarmos nosso dataset, chamaremos a classe train_simple_object_detector() com todos os seus valores default (que são razoavelmente bons)
    options = dlib.simple_object_detector_training_options()
    #Cartas são de certa forma simétricas, então, melhoraremos a qualidade do resultado mudando o padrão de add_left_right_image_flips para True
    options.add_left_right_image_flips = True
    #O valor de C encoraja um fitting melhor nos dados, mas um C muito grande encoraja overfitting, valor 5 ainda é experimental, precisamos de mais teste
    options.C = cvalue
    # Quantos Threads temos disponíveis para treinar em paralelo?
    options.num_threads = nbthreads
    #Vamos acompanhar o processo
    options.be_verbose = True
    #Concatene o diretório do treino e seu .xml correspondente numa string
    training_xml_path = os.path.join(train_folder, "training.xml")
    #testing_xml_path = os.path.join(train_folder, "testing.xml")
    #Finalmente chamamos a função que faz o treino de fato. Salva o resultado  em um detector .svm
    # a partir do nosso .xml (Dados do treino supervisionado)
    dlib.train_simple_object_detector(training_xml_path, "detector.svm",
                                      options)
    print("Training accuracy: {}".format(
        dlib.test_simple_object_detector(training_xml_path, "detector.svm")))
    print("Process done sucesssfully")
コード例 #35
0
    def fit(self,images,annotations,visualize=False, savePath=None):
        annotations = self._prepare_annotations(annotations)
        images = self._prepare_images(images)
        print('IMAGES',images)
        print('annots',annotations)
        print(self.options)
        self._detector = dlib.train_simple_object_detector(images,annotations,self.options)

        if visualize:
            win = dlib.image_window()
            win.set_image(self._detector)
            dlib.hit_enter_to_continue()
        if savePath is not None:
            self._detector.save(savePath)
        return self
コード例 #36
0
ファイル: train_detector.py プロジェクト: ChienHsiung/python
# loop over the image paths
for imagePath in paths.list_images(args["class"]):
	# extract the image ID from the image path and load the annotations file
	imageID = imagePath[imagePath.rfind("/") + 1:].split("_")[1]
	imageID = imageID.replace(".png", "")
	p = "{}/annotation_{}.txt".format(args["annotations"], imageID)
	#annotations = loadmat(p)["box_coord"]
        annotations = getAnnotation(p)
	# loop over the annotations and add each annotation to the list of bounding
	# boxes
        
	bb = [dlib.rectangle(left=long(annotations[0]), top=long(annotations[1]), right=long(annotations[0]+annotations[2]), bottom=long(annotations[1]+annotations[3]))]
	boxes.append(bb)

	# add the image to the list of images
	images.append(io.imread(imagePath))

# train the object detector
print("[INFO] training detector...")
detector = dlib.train_simple_object_detector(images, boxes, options)

# dump the classifier to file
print("[INFO] dumping classifier to file...")
detector.save(args["output"])

# visualize the results of the detector
win = dlib.image_window()
win.set_image(detector)
dlib.hit_enter_to_continue()
コード例 #37
0
ファイル: learning.py プロジェクト: imagedl/TrafficSign
import cv2
import dlib
import os
from skimage import filter, data, io
from skimage.viewer import ImageViewer


learning_folder = 'learning'

options = dlib.simple_object_detector_training_options()
options.add_left_right_image_flips = True
options.C = 5
options.num_threads = 1
options.be_verbose = True

training_xml_path = os.path.join(learning_folder,'info.xml')

dlib.train_simple_object_detector(training_xml_path, 'info.svm', options)

print ("")
print ("Training accuracy: {}".format(
    dlib.test_simple_object_detector(training_xml_path, "info.svm")
))

detector = dlib.simple_object_detector("info.svm")

win_det = dlib.image_window()
win_det.set_image(detector)

dlib.hit_enter_to_continue()
コード例 #38
0
ファイル: train.py プロジェクト: HaoyangWang/menpodetect
def train_dlib_detector(images, epsilon=0.01, add_left_right_image_flips=False,
                        verbose_stdout=False, C=5, detection_window_size=6400,
                        num_threads=None):
    r"""
    Train a dlib detector with the given list of images.

    This is intended to easily train a list of menpo images that have their
    bounding boxes attached as landmarks. Each landmark group on the image
    will have a tight bounding box extracted from it and then dlib will
    train given these images.

    Parameters
    ----------
    images : `list` of `menpo.image.Image`
        The set of images to learn the detector from. Must have landmarks
        attached to **every** image, a bounding box will be extracted for each
        landmark group.
    epsilon : `float`, optional
        The stopping epsilon.  Smaller values make the trainer's solver more
        accurate but might take longer to train.
    add_left_right_image_flips : `bool`, optional
        If ``True``, assume the objects are left/right symmetric and add in
        left right flips of the training images.  This doubles the size of the
        training dataset.
    verbose_stdout : `bool`, optional
        If ``True``, will allow dlib to output its verbose messages. These
        will only be printed to the stdout, so will **not** appear in an IPython
        notebook.
    C : `int`, optional
        C is the usual SVM C regularization parameter.  Larger values of C will
        encourage the trainer to fit the data better but might lead to
        overfitting.
    detection_window_size : `int`, optional
        The number of pixels inside the sliding window used. The default
        parameter of ``6400 = 80 * 80`` window size.
    num_threads : `int` > 0 or ``None``
        How many threads to use for training. If ``None``, will query
        multiprocessing for the number of cores.

    Returns
    -------
    detector : `dlib.simple_object_detector`
        The trained detector. To save this detector, call save on the returned
        object and pass a string path.

    Examples
    --------
    Training a simple object detector from a list of menpo images and save it
    for later use:

    >>> images = list(mio.import_images('./images/path'))
    >>> in_memory_detector = train_dlib_detector(images, verbose_stdout=True)
    >>> in_memory_detector.save('in_memory_detector.svm')
    """
    rectangles = [[pointgraph_to_rect(lgroup.lms.bounding_box())
                  for lgroup in im.landmarks.values()]
                  for im in images]
    image_pixels = [menpo_image_to_uint8(im) for im in images]

    if num_threads is None:
        import multiprocessing

        num_threads = multiprocessing.cpu_count()

    options = dlib.simple_object_detector_training_options()
    options.epsilon = epsilon
    options.add_left_right_image_flips = add_left_right_image_flips
    options.be_verbose = verbose_stdout
    options.C = C
    options.detection_window_size = detection_window_size
    options.num_threads = num_threads

    return dlib.train_simple_object_detector(image_pixels, rectangles, options)
コード例 #39
0
import dlib, sys, glob
from skimage import io

# cups_training = '/home/jyotiska/Dropbox/Computer Vision/cupdataset.xml'
bottle_training = "/home/jyotiska/Dropbox/Computer Vision/bottledataset.xml"
# bottle_test_dir = 'bottle_train'
options = dlib.simple_object_detector_training_options()

options.add_left_right_image_flips = True

options.C = 4
options.epsilon = 0.01
options.num_threads = 8
options.be_verbose = True

dlib.train_simple_object_detector(bottle_training, "bottledetector.svm", options)

# print "\nTraining accuracy: ", dlib.test_simple_object_detector(cups_training,"cupdetector.svm")
コード例 #40
0
# images you haven't trained on.  Don't just leave the value set at 5.  Try a
# few different C values and see what works best for your data.
options.C = 5 
# Tell the code how many CPU cores your computer has for the fastest training.
options.num_threads = 4
options.be_verbose = True 

# This function does the actual training.  It will save the final detector to
# detector.svm.  The input is an XML file that lists the images in the training
# dataset and also contains the positions of the face boxes.  To create your
# own XML files you can use the imglab tool which can be found in the
# tools/imglab folder.  It is a simple graphical tool for labeling objects in
# images with boxes.  To see how to use it read the tools/imglab/README.txt
# file.  But for this example, we just use the training.xml file included with
# dlib.
dlib.train_simple_object_detector(faces_folder+"/training.xml","detector.svm", options)



# Now that we have a face detector we can test it.  The first statement tests
# it on the training data.  It will print the precision, recall, and then
# average precision.
print "\ntraining accuracy:", dlib.test_simple_object_detector(faces_folder+"/training.xml", "detector.svm")
# However, to get an idea if it really worked without overfitting we need to
# run it on images it wasn't trained on.  The next line does this.  Happily, we
# see that the object detector works perfectly on the testing images.
print "testing accuracy: ", dlib.test_simple_object_detector(faces_folder+"/testing.xml", "detector.svm")



# Now let's use the detector as you would in a normal application.  First we
コード例 #41
0
# Tell the code how many CPU cores your computer has for the fastest training.
options.num_threads = 4
options.be_verbose = True


training_xml_path = os.path.join(faces_folder, "training.xml")
testing_xml_path = os.path.join(faces_folder, "testing.xml")
# This function does the actual training.  It will save the final detector to
# detector.svm.  The input is an XML file that lists the images in the training
# dataset and also contains the positions of the face boxes.  To create your
# own XML files you can use the imglab tool which can be found in the
# tools/imglab folder.  It is a simple graphical tool for labeling objects in
# images with boxes.  To see how to use it read the tools/imglab/README.txt
# file.  But for this example, we just use the training.xml file included with
# dlib.
dlib.train_simple_object_detector(training_xml_path, "detector.svm", options)



# Now that we have a face detector we can test it.  The first statement tests
# it on the training data.  It will print(the precision, recall, and then)
# average precision.
print("")  # Print blank line to create gap from previous output
print("Training accuracy: {}".format(
    dlib.test_simple_object_detector(training_xml_path, "detector.svm")))
# However, to get an idea if it really worked without overfitting we need to
# run it on images it wasn't trained on.  The next line does this.  Happily, we
# see that the object detector works perfectly on the testing images.
print("Testing accuracy: {}".format(
    dlib.test_simple_object_detector(testing_xml_path, "detector.svm")))
コード例 #42
0
import dlib, sys, glob
from skimage import io

cups_training = '/home/jyotiska/Dropbox/Computer Vision/cupdataset.xml'
cups_training_2 = '/home/jyotiska/Dropbox/Computer Vision/cupdataset_3.xml'
cup_test_dir = 'Cups_train'
options = dlib.simple_object_detector_training_options()

options.add_left_right_image_flips = True

options.C = 4
options.epsilon = 0.01
options.num_threads = 8
options.be_verbose = True

dlib.train_simple_object_detector(cups_training_2,"cupdetector_3.svm",options)

# print "\nTraining accuracy: ", dlib.test_simple_object_detector(cups_training,"cupdetector.svm")


コード例 #43
0
ファイル: dlib.py プロジェクト: MatthewYancey/core
# does all the training
import os
import sys
import glob
import dlib
# from skimage import io

path = os.getcwd() + '/../'

options = dlib.simple_object_detector_training_options()
options.add_left_right_image_flips = True
# The trainer is a kind of support vector machine and therefore has the usual
# SVM C parameter.  In general, a bigger C encourages it to fit the training
# data better but might lead to overfitting.  You must find the best C value
# empirically by checking how well the trained detector works on a test set of
# images you haven't trained on.  Don't just leave the value set at 5.  Try a
# few different C values and see what works best for your data.
options.C = 5
# Tell the code how many CPU cores your computer has for the fastest training.
options.num_threads = 2
options.be_verbose = True

training_xml_path = os.path.join(path, 'data/mdl_detector/train.xml')
testing_xml_path = os.path.join(path, 'data/mdl_detector/test.xml')

# does the training
dlib.train_simple_object_detector(training_xml_path, path + 'data/detector.svm', options)
コード例 #44
0
# Tell the code how many CPU cores your computer has for the fastest training.
options.num_threads = 8
options.be_verbose = True

training_xml_path = "signs.xml"
## testing_xml_path = os.path.join(faces_folder, "testing.xml")
# This function does the actual training.  It will save the final detector to
# detector.svm.  The input is an XML file that lists the images in the training
# dataset and also contains the positions of the face boxes.  To create your
# own XML files you can use the imglab tool which can be found in the
# tools/imglab folder.  It is a simple graphical tool for labeling objects in
# images with boxes.  To see how to use it read the tools/imglab/README.txt
# file.  But for this example, we just use the training.xml file included with
# dlib.
dlib.train_simple_object_detector(training_xml_path, TRAINING, options)

# Now that we have a face detector we can test it.  The first statement tests
# it on the training data.  It will print(the precision, recall, and then)
# average precision.
print("")  # Print blank line to create gap from previous output
print("Training accuracy: {}".format(dlib.test_simple_object_detector(training_xml_path, TRAINING)))

# Now let's use the detector as you would in a normal application.  First we
# will load it from disk.
detector = dlib.simple_object_detector(TRAINING)

# We can look at the HOG filter we learned.  It should look like a face.  Neat!
win_det = dlib.image_window()
win_det.set_image(detector)
コード例 #45
0
options.num_threads = 2
options.be_verbose = True


training_xml_path = os.path.join(obj_folder, "training.xml")
testing_xml_path = os.path.join(obj_folder, "testing.xml")
# This function does the actual training.  It will save the final detector to
# detector.svm.  The input is an XML file that lists the images in the training
# dataset and also contains the positions of the face boxes.  To create your
# own XML files you can use the imglab tool which can be found in the
# tools/imglab folder.  It is a simple graphical tool for labeling objects in
# images with boxes.  To see how to use it read the tools/imglab/README.txt
# file.  But for this example, we just use the training.xml file included with
# dlib.
print "start training"
dlib.train_simple_object_detector(training_xml_path, "detector.svm", options)
print "end training"


# Now that we have a face detector we can test it.  The first statement tests
# it on the training data.  It will print(the precision, recall, and then)
# average precision.
print ("")  # Print blank line to create gap from previous output
print ("Training accuracy: {}".format(dlib.test_simple_object_detector(training_xml_path, "detector.svm")))
# However, to get an idea if it really worked without overfitting we need to
# run it on images it wasn't trained on.  The next line does this.  Happily, we
# see that the object detector works perfectly on the testing images.
print ("Testing accuracy: {}".format(dlib.test_simple_object_detector(testing_xml_path, "detector.svm")))


# Now let's use the detector as you would in a normal application.  First we
コード例 #46
0
ファイル: bottle_classifier.py プロジェクト: amruthv/Dionysus
import datetime
import os


bottle_training_data = 'helpers/bottles_dataset.xml'
img_list = 'fetch_images/image_urls.txt'
options = dlib.simple_object_detector_training_options()
options.add_left_right_image_flips = True

# options.detection_window_size = 8000
options.C = 4
options.epsilon = 0.01
options.num_threads = 8
options.be_verbose = True

dlib.train_simple_object_detector(bottle_training_data,"square_bottle_classifier.svm",options)

ts = time.time()
st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') + '/'

parentDir = 'models/'
if not os.path.exists(parentDir + st):
    os.makedirs(parentDir + st)
    shutil.copyfile("square_bottle_classifier.svm", parentDir + st + "square_bottle_classifier.svm")
    shutil.copyfile(bottle_training_data, parentDir + st + "bottles_dataset.xml")
    shutil.copyfile(img_list, parentDir + st + "image_urls.txt")

detector = dlib.simple_object_detector("square_bottle_classifier.svm")
win = dlib.image_window()
win.set_image(detector)