dest="pred_seed", action='store_true', help="Tune with predictable seed to avoid randomness") args = parser.parse_args() U.set_theano_device(args.device) from dlm.reranker import augmenter from dlm.reranker import mosesIniReader as iniReader if os.environ.has_key('MOSES_ROOT'): moses_root = os.environ['MOSES_ROOT'] else: L.error("Set MOSES_ROOT variable to your moses root directory") U.mkdir_p(args.out_dir) #cmd = moses_root + '/bin/moses -show-weights -f ' + args.input_config + ' 2> /dev/null' #features = U.capture(cmd).strip().split('\n') features = iniReader.parseIni(args.input_config) output_nbest_path = args.out_dir + '/augmented.nbest' if args.no_aug: shutil.copy(args.input_nbest, output_nbest_path) else: augmenter.augment(args.model_path, args.input_nbest, args.vocab_path, output_nbest_path) L.info('Extracting stats and features') #L.warning('The optional arguments of extractor are not used yet')
f.write(str(bias) + "\n") # Arguments for this script parser = argparse.ArgumentParser() parser.add_argument("-m", "--corelm-model", dest="corelm_model", required=True, help="The input NPLM model file") parser.add_argument("-v", "--vocab-file", dest="vocab_path", required=True, help="The input vocabulary") parser.add_argument("-dir", "--directory", dest="out_dir", help="The output directory for log file, model, etc.") args = parser.parse_args() U.set_theano_device('cpu',1) from dlm.models.mlp import MLP if args.out_dir is None: args.out_dir = 'corelm_convert-' + U.curr_time() U.mkdir_p(args.out_dir) # Loading CoreLM model and creating classifier class L.info("Loading CoreLM model") classifier = MLP(model_path=args.corelm_model) args_nn = classifier.args params_nn = classifier.params U.xassert(len(params_nn)==7, "CoreLM model is not compatible with NPLM architecture. 2 hidden layers and an output linear layer is required.") embeddings = params_nn[0].get_value() W1 = params_nn[1].get_value() W1 = np.transpose(W1) b1 = params_nn[2].get_value() W2 = params_nn[3].get_value() W2 = np.transpose(W2) b2 = params_nn[4].get_value()